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Abstract—This paper proposes a new class of traffic profiles that is bet-
ter suited for metering bursty Internet traffic streams than the traditional
token bucket profile. A good traffic profile should satisfy two criteria:
first, it should consider packets from & conforming traffic stream as in-
profile with high probability to ensure a strong QoS guarantee; second, it
should limit the network resources consumed by 2 non-conforming traffic
stream to no more than that consumed by a conforming stream. We mode!
a bursty Internet traffic stream as an ON/OFF stream, where both the ON-
period and the OFF-period have a heavy-tailed distribution. Our study
shows that the heavy-tailed distribution leads to an excessive randomness
in the long-term session rate distribution. Therefore, it is inherently dif-
ficult for any profile that limits the long-term average session rate to give
a strong QoS guarantee for the conforming traffic streams. Qur simula-
tion demonstrates that a token bucket profile that couples the average rate
control and the burst size control has a weak QoS guarantee. Based on
this result, we propose a new class of traffic profiles that decouples the
long term average rate control from the burst size control. Compared to
a token bucket profile, this profile improves the level of QoS for a con-
forming traffic stream, yet limits the “effective bandwidth” consumed by a
non-conforming traffic stream.

I. INTRODUCTION

This paper discusses the design of traffic profiles for bursty Internet
traffic. We propose a new class of traffic profiles that performs better
than the traditional token bucket profile. In the Diffserv [1] architec-
ture, a traffic profile defines the rules for a meter to decide whether a
packet from a traffic stream is in-profile or out-of-profile. The packet
may be subject 1o different conditioning actions. When there is a Ser-
vice Level Agreement (SLA) present, the essential goal of a profile is
not to smooth bursty traffic. Instead, it is to check whether a traffic
stream conforms to the SLA. A good traffic profile needs to satisfy
two criteria, First, from the perspective of providing a QoS guaran-
tee, it is desirable to have a high probability guarantee that packets
from a conforming stream will be identified as in-profile. A conform-
ing stream is a traffic stream whose statistics are allowed by a traffic
profile. Second, from the perspective of policing against misbehavior,
a traffic profile should limit the “effective bandwidth™ [2] consumed
by the non-conforming stream to be no more than that consumed by
a conforming stream. Thus the misbehavior of the non-conforming
stream will not degrade the level of service for a conforming stream.
An example of a non-conforming stream is one that has a much higher
expected transmission rate than that allowed by a traffic profile.

It is desirable to have a range of traffic profiles for different classes
of traffic, and for differentiation within a class. For example, traf-
fic streams generated by constant bit rate video applications have quite
different statistics than those generated by web browsing sessions, thus
require different profiles to meet their QoS requirements. It is worth
noting that the type of traffic we consider in this paper is most often
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generated by document transfers, such as web browsing. Tradition-
ally, the QoS requirement for such traffic (a.k.a. elastic traffic) is less
obvious than that for the real-time traffic. In this paper, the QoS re-
quirement we consider is transparency [3). If a burst is sent at the
specified peak rate, we say the transfer is transparent. If a burst is
not sent at the specified peak rate, a user will notice delay, spend time

waiting, and become dissatisfied, Thus, we consider rransparency asa
valid QoS requirement for such interactive applications. We admit that
the ultimate QoS measurement is user satisfaction, which can not be
completely determined by the measurement of network performance.

For an interactive traffic stream, a user may value some bursts more
than others. Since we do not have a precise method te quantify user
satisfaction, as an approximation, we assumne that the higher the per--
centage of bursts that are sent transparently , and the more the bytes

that are sent transparently, the higher. the user’s satisfaction is. There

have been related studies on traffic profiling algorithms, such as dif-

ferent window policing mechanistns [4], multiple token banks 5], and

the fractal leaky bucket [6] algorithm.

In this paper, we model a bursty Internet traffic stream as an
ON/OFF stream, where both the ON-period and the OFF-period have
heavy-tailed distributions. This model is a simpiificd derivation from
recent results of traffic measurement and modeling [7], [8], [9). Ac-
cording to Barford and Crovella’s work [10], users’ Web browsing
behaviors follow the ON/OFF pattern, where ON-period has a heavy-
tailed distribution attributed to the heavy-tailed file size distribution.

Our simulation and analysis show that there is no “natural™ average
session rate for a single traffic stream. Thus, it is unlikely for any pro-
file that limits the long-term average session rate to give a strong QoS
guarantee, Qur simulation also demonstrates that a token bucket pro-
file that couples the average rate control and the burst size control has
a weak QoS guarantee. Based on this result, we propose a new class of
traffic profiles that decouples the long term average rate control from
the burst size control. Compared to a token bucket profiie, this pro-
file improves the level of QoS for a conforming stream, yet effectively
limits the “effective bandwidth" consumed by a non-conforming traf-
fic stream.

II. TRAFFIC MODEL, SIMULATION METHOD AND NQTATION
P/L
| |

1
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Fig. 1. The ON/OFF Traffic Model.

In this section, we describe the traffic medel, the simulation method
and some notation. In our simulation, a bursty traffic stream from a
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TABLE 1
SIMULATION PARAMETERS

Period | Shape (o) | Location (B) Distribution Mean
ON 1.05 1024 Bytes | P{X <z} =1-—(Z2)"" £ > 1024 14026 Bytes
OFF 14 1 Second P{X<z}=1-(I) " z>1 3.4939 Seconds
Packet Length 1024 Bytes
Peak Rate 1.5Mbps
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Fig. 2. The convergence of a Pareto ON/OFF Trzffic Stream. The different  Fig. 3. The convergence of an Exponential ON/OFF Traffic Stream. The

curves are for scssion lengths of 10s, 100s, 1000s, 1 hour and 2 hours,

single source is modeled as an ON/OFF traffic stream. The ON-period
modets a single flow, such as the transfer of a single web page, and
the OFF-period models users’ thinking time. ON-periods and OFF-
periods are strictly alternating. The stream models traffic generated
" during a session, i.., a busy period of user activities, such as web
browsing for an hour. For bursty Internet traffic, both ON-periods and
OFF-periods are modeled by Pareto distributions. In an CN-period,
packet arrivals are spaced out by P/L, where P is the packet size
and L is the peak rate. Figure | depicts the traffic model. In our
simulaticn, the traffic stream is passed through a meter that decides
whether a packet is in-profile or out-of-profile according to a traffic
profile. As we are interested in the transparency QoS requirement,
out-of-profile traffic is shaped, instead of dropped or marked. Thus,
the transfer time of a burst can be used to measure performance.
Traditional traffic models assume that the burst size is exponentially
distributed. To better understand the difference between these two
models, we simulate both the Exponential distribution and the Pareto
distribution in some experiments, and compare the results, [f a Pareto
distribution has mean p and location parameter mn, the corresponding
exponential distribution is defined as P{X < z} =1 - e,z >
.
In this paper, a token bucket profile with a token rate r biytes/s and
a token depth b bytes is denoted by the pair (r, b). We always assume
our simulation starts at time 0. And A(t) denotes the cumulative ar-
rivals of a traffic stream up to time {. Simulation results shown are
obtained using the parameters in Table I unless otherwise specified.
These parameters for the Parete distribution are chosen bzsed on re-
cent research results on traffic measurement and modeling [10], [9].

Ifl. AVERAGE SESSION RATE OF A BURSTY SOURCE

For a heavy-tailed ON-period distribution, there is no “natural”
burst size [7], to which the token bucket size can be set. In this sec-

different curves are for session lengths of 10s, 100s, 1000s, 1 hour and 2 hours.

tion, we look at the distribution of the average session rate of a traffic
stream at different time scales via simulation. A session is simulated
by a single run with some length 7". Each distribution curve is sampled
from 10° runs. Figure 2 and Figure 3 show the cumaulative distribution
function of the normalized session rate of a Pareto distribution and an
Exponential distribution over multiple time scales. A normalized ses-
sion rate is computed by dividing the average rate in a simulated ses-
sion by the expected rate of the ON/OFF stream. The tail is shortened
quickly for the Exponential stream, which shews that the throughput
of an exponential stream averaging over an hour duration has a small
variance and there exists a “natural” session rate to which the token
tate can be set. In contrast, the tail shape for the Pareto distribution
does not change much for simulations ranging from ten seconds to
two hours, which suggests that even averaging over a duration as long
as two hours, the session rate of a heavy-tailed ON/OFF stream has a
large variance. Hence it has non-negligible probabilities of reaching
quite Jarge or quite small values. The observed maximum throughput
is only limited by the peak rate. Intuitively, the simulation results can
be explained by the central limit theorem and the corresponding limit
theorem for random variables with infinite variance [11], [12]. Fora
detailed analysis, see [131.

This slow-convergence property poses a problem for designing traf-
fic profiles. A bursty traffic stream generated by a particular applica-
tion is a random process. We hope to predict its behavior from prior
observations in order to negotiate a proper profile for future usage. For
an Exponential ON/OFF taffic stream, we observe that it is possible
to predict the stream’s long term behavior. However, for a heavy-taited
ON/OFF stream, ¢ven if we assume that the application always gen-
erates traffic conforming to a known distribution, the behavior of an
individual session is still not predictable. For any profile that limits
the average session rate to =, the number of arrived tokens A(t) ina
duration ¢ is limited by rt. Both our simulation and analysis demon-
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strate that for any time scale ¢, there is a non-negligible probability
that an application may generate near-peak traffic for the entire dura-
tion t. Hence, unless A(£) is close to Lt (recall that L is the peak rate),
an application will generate out-of-profile traffic with non-negligible
probability, and we can not guarantee that its QoS requirements will
be satisfied.

IV. EVALUATING THE PERFORMANCE OF TOKEN BUCKET
PROFILES

In this section, we look at the performance of a token bucket profile.
A token bucket profile (r, b) limits the maxirmum burst size of a traffic
stream to b, as well as the average rate of a session with length & to
7 + b/t thus enhances the predicability of the output traffic stream, It
has no long term memory. When the bucket is full, extra tokens are
discarded, and the good behavior of a stream is forgotten. The decision
made on a packet depends only on the short term history of a traffic
stream, i.¢., whether the previous burst has consumed all the tokens,
but not on the long term history.

A. Performance of a Token Bucket Profile

We simulate the case where an ON/OFF traffic stream is policed
against a token bucket profile. When the transfer of a burst is finished,
an OFF time follows before 2 new burst arrives, The maximum bucket
size is set at ten times the mean burst size. At the beginning of each
simulation, the bucket is full. For each run, we record the time it takes
for each burst to be transmitied. The time is normalized using the
peak-rate transfer time of each burst. We then draw a distribution of
the normalized transfer time, both in the number of bursts and in the
number of bytes. Each distribution is sampled from 10,000 runs. Each
simulation runs for the duration which it takes to transmit the amount
of traffic that would be sent in a one-hour session with no traffic pro-
file present. Figure 4 and Figure 5 show the performance of a token
bucket profile for shaping a Pareto ON/OFF source and an Exponential
ON/OFF source, The token rate varies from the expected session rate
to twice the expected session rate.

As seen from the figures, when the token rate is set to the expected
session rate, for a Pareto ON/OFF stream, more than 98% of bursts can
be sent without distortion. However, those bursts only consist of 45%
of the total bytes sent. For an Exponential ON/OFF stream, more than
90% of files and 80% of bytes can be sent without distortion. When
the token rate is incteased to twice the average session rate, the perfor-
mance for the Exponential stream is improved much more significantly
than that for the Pareto stream. This result can be predicted from the
session rate distribution, as a quite high session rate may happen for
a Pareto ON/OFF stream with non-negligible probability. The session
rate may be very close to the peak rate. Hence increasing the token rate
does not increase the performance significantly for the Pareto ON/OFF
stream.

B. How to Improve QoS Guarantees

A token bucket profile limits both the burst size and the average
session rate. We can either increase the limit on the average session
rate or increase the limit on the maximum burst size to improve QoS
guarantees. To formulate ideas on how to improve the performance
of a token bucket profile for a heavy-tailed ON/OFF stream, we com-
pare the effectiveness of increasing the bucket size and increasing the
token rate from three aspects. First, we compare how effective they

are in improving the QoS guarantees for a single conforming traffic
streamn. By “conforming”, we mean that the traffic stream s generated
from the pre-negotiated distribution. Second, we compare how effec-
tive they are in limiting the QoS guaranices for a single aggressive
stream. By “aggressive”, we mean that the traffic stream consumes
more bandwidth than pre-negotiated, Thirdly, we compare how effec-
tive they are in controlling aggregated aggressive streams, An effective
profile should limit the peak bandwidth of the multiplexed aggressive
streams to be no more than the peak bandwidth of the multiplexed con-
forming streams without traffic profiles. Thus, in the worse case, when
the majority of the users are misbehaving, a network provider can still
provide QoS for the in-profile traffic, given that he has provisioned his
network according to the peak bandwidth of the multiplexed conform-
ing streams.

To conduct the first comparison, we run simulations with a token
bucket profile that allows unbounded bucket size. And the initial num-
ber of tokens in the bucket is set at ten times the average burst size. The
result from this profile is compared against the normal token bucket
profile (r, b) and (2r, b), respectively. Figure 6 and Figure 7 show the
performance comparison when the stream’s expected rate is r. The to-
ken bucket profile {2r, b} shortens the token-rate burst transfer time by
half, but it does not significantly increase the number of bursts or bytes
that are sent at the peak rate. In contrast, the profile (r, unlimited)
reduces the non-peak rate transfered files from 1.7% to less than 0.2%
and the non-peik rate transfered bytes from 55% to 33%.

For the second comparison, we set the minimum burst size of
an aggressive stream at ten times that of a conforming stream.
Such an aggressive stream is policed by profiles (v, b), (2r, ) and
(r, uniimited), where 7 is the expected rate of a conforming stream
and b is ten times the mean burst size of a conforming stream. The
results are shown in Figure 8 and Figure 9. As can be seen, the profile
(27, b) is not as effective as the profile (r, unlimited). The profile
{2r, b) allows more bursts and bytes to be sent without distortion or
with less distortion and can not limit the long term session rate to be
7. Thus, it is not as effective as the profile (r, unlimited) at discrimi-
nating conforming and aggressive streams.

For the third comparison, we compare the normalized peak data rate
of aggregated aggressive traffic streams when shaped by the three pro-
files (r,b), (2, b) and (v, unlimited). A normalized peak data rate
is computed as P/nr, where P is the measured average peak rate of
aggregated streams, r is the expected data rate of a single conforming
traffic stream, and 7 is the number of streams. The aggregated peak
rate P, is a random variable, with an upper bound nn x L, where L
is the peak data rate of a single traffic stream. In our simulation, all
streams are homogeneous. For each n, we ran 10000/n simulations.
Each of them simulaies an 8-hour trace. We record the peak arrival
rate seen in 5ms intervals in the trace of each run. The length of the
interval is chosen because the spacing between packets from a single
source is about 5ms in our simulation, We then compute the average
peak rate P and the standard deviation of P over 10000/n runs. As
we do not know the distribution of P and each simulation is run for
a long time, we use P as a representative value such that with a high
probability, the peak rate of the aggregated traffic streams P. is less
than P, ]

Figure 10 shows the simulation results, together with the normal-
ized data rate for conforming traffic streams when there is no profile
and no shaping. As shown in Figure 10, the normalized data rate de-
generates as the number of multiplexed sources increases, indicating
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Fig. 4.  Fraction counted by the number of bursts for an ON/OFF traffic
stream. When the token rate doubles, most bursts of the Exponential stream
are sent at the peak rate.
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a statistical multiplexing gain for bursty traffic. The normalized peak
data rates of the aggregated aggressive streams shaped by the profile
(r, unlimited) and (r, b) are quite close to that of the aggregated con-
forming streams without shaping. For the profile {2r, b), the aggre-
gated normalized peak data rate exceeds that of conforming streams,
which means that the profile is not effective in limiting the effective

Parformanca of a Token Bucket Profile
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Fig. 5. Fraction counted by bytes. When the token rate doubles, most bytes
of the Exponential stream are sent at the peak rate. For the heavy-tailed traf-
fic stream, even more than 98% of the bursts are sent at the peak rate, they
constitute merely about 45% of the bytes.
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bandwidth of aggressive streams. A network will become congested
when the peak of the aggregated traffic exceeds the bandwidth provi-
sipned according to the conforming sources without profiles, and thus
can not guarantee the QoS for the in-profile traffic.
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Fig. 13. The 2Bucket Profile

V. A NEW TRAFFIC PROFILE: THE 2BUCKET PROFILE

From the above experiments, we conclude that to effectively im-
prove QoS without compromising discrimination against misbehavior,
it is better to increase the token bucket size than to increase the token
rate. However, the (v, unlimited) profile offers no control over burst
size. A malicious user may keep silent for almost the entire course of
a session and then burst out all his accumulated tokens. This observa-
tion {eads to our design of a new class of traffic profile: the 2Bucket
profile. A visualization of the profile is shown in Figure 13,

Caornparison of Different Profies.
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Fig. 12. Fraction counted by bytes.

One bucket B, that has a maximum capacity b is used to control the
burst size. The other bucket By, which has an unlimited capacity, is
used to record the long term history. Tokens arriving from the network
are stored into B, first. If B, is overflowed, tokens are dumped into
B:i. When a packet arrives, if B, has enough tokens, the packet is
transmitted immediately. If B, is empty and B; has extra tokens, a
refill process may be triggered, This process is triggered according to
a refill policy. The choice of refill policies is a key design parameter
of the 2Bucket profile. In a refill, tokens are taken from By to fill B,.
After B, is filled with enough tokens, the packet may be sent. If both
B, and B; are empty, or B, is empty and a new refill process is not
allowed, the packet has to wait for tokens to come from the network.
A refill policy decides when and how tokens are refilled from B, into
B,. We use the terms B, and B, to refer to both the available tokens
in the two buckets and the buckets themselves, as the meanings will be
clear from context. Recall that A(¢) is the cumulative arrivals from a
stream in a time period ¢. This two-bucket profile ensures that as long
as A(t) <rt+b, Bi+ B: > 0.

The behavior of the 2Bucket profile is quite different when different
refill policies are deployed. A refill policy determines the burstiness
allowed by the profile. We will describe two possible policies and
analyze their performance. It is also possible to design other refill
policies, depending on the type of controls we need. The first policy
is called “forced off”. For this policy, a refill process fills B, with
min{b, By) tokens at the peak rate. Two consecutive refills must be
separated by at lcast the time interval forced_off. This policy will break
a long burst into several small bursts, as long as the long term behavior
of a traffic stream is good, i.e., By + B, is not empty. If the long
burst is a document transfer, this break-down will increase the transfer
time. Depending on the values of b and forced off, the transfer time
can still be much less than the token-rate transfer time. If the burst is
actually a video stream (for example, a user asks for a cheap bursty-
traffic profile but uses it to watch on-line video), this break-down will
give intolerable performance. Thus, it can discourage the misuse of a
profile.

We call the second policy one_refill. For this policy, refill is more
strict. Only one refill of min(b, B;) tokens is allowed in any ON pe-
riod. It limits the maximum burst size to be at most 2 x b, If a stream’s
long term behavior is good, each ON-peried is guaranteed a refill. In
contrast, for a token-bucket profile, if the previous burst exhausts all
available tokens in the bucket, the next burst has to wait for more to-
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kens.

Performance of this new profile with two policies is shown in Fig-
ure 11 and Figure 12, along with the corresponding token-bucket pro-
files (r,b) and (r, unlimited). In our simulation, for the forced off
policy, the parameter forced_off is set to the location parameter of OFF-
period distribution, min_off. For the one_refill policy, if we have not
seen a packet from a source for a titme period min_off, we conclude
one burst has ended and the stream is eligible for a new refill. The
profile (r, unlimited) is actually a special case of the 2Bucket pto-
file. When the parameter forced.off is set to zero, the 2Bucket profile
behaves exactly the same as (r, unlimited).

Notice that there is a sharp knee in the curve for forced off, and the
performance of forced_gff and (r, unlimited) are almost the same af-
ter the knee. When examining the raw transfer time recorded in the
trace file, we found that the bursts after the knee were sent when B;
ran out of tokens. Therefore, the rest of the bursts can only be sent at
the token rate, despite the refill policies. When B; runs out of tokens,
the long term behavior of a stream reaches the limitation imposed by
the token rate. Clearly neither forced_off nor {r, unlimited) can im-
prove the performance in this case. The steep region of the curve con-
sists of bursts that are transmitted when B; has extra tokens. In the
(r, unlimited) case, bursts are sent at the peak rate immediately. In
the case of forced off, a forced_off token-rate period is forced between
two bursts. The transfer time is slightly lengthened under this policy.
Compared to the token bucket profile, both forced off and one refill
improve performance.

Comparison of Aggregation
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Fig, 14. The normalized data rate of aggregated traffic with profile

(r, unlimited), one_refill, forced off and (v, b) applicd to aggressive traffic
streams, and the normalized peak data rate for conforming traffic streams when
there is no profile and no shaping. The performance of each profile is similar.

Figure 14 shows the normalized peak data rate of aggregated
aggressive traffic streams when shaped by the four profiles {r,b),
(v, unlimited), one_refill and forced_off, and the normalized peak
data rate for conforming traffic streams when there is no profile and
no shaping. The four profiles perform indistinguishably. All of them
are able to limit the normalized peak data rate of the aggregated aggre-
gated streams quite close to that of the aggregated conforming streams.
For details, see [13].

V1. CONCLUSIONS AND FUTURE WORK

In this paper, we describe a new class of traffic profiles — the
2Bucket profile. When metering bursty traffic, this profile achieves

better performance than the traditional token bucket profile by decou-
pling the long term average rate contrel from the burst size control.
Not only is the profile able to remember the long term behavior of
a traffic stream, it also enables the network to control the burst size.
We also present two possible refill policies that can be applied to the
2Bucket profile to demonstrate how a network can use the profile to
enforce different QoS policies.

In the future, we intend to build a prototype system and test the ef-
fectiveness of the 2Bucket profile through user experiments and trace-
driven simuylation. In particular, we are interested in testing how dif-
ferent policies and parameter settings affect users’ QoS assessments.
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