
A User-Guided Cognitive Agent for Network Service Selection in

Pervasive Computing Environments

George Lee Peyman Faratin Steven Bauer John Wroclawski

Computer Science and Artificial Intelligence Laboratory

Massachusetts Institute of Technology

Cambridge, MA 02139

{gjl,peyman,bauer,jtw}@lcs.mit.edu

Abstract

Connectivity is central to pervasive computing environments. We seek to catalyze a world of rich and

diverse connectivity through technologies that drastically simplify the task of providing, choosing, and

using wireless network services; creating a new and more competitive environment for these capabilities.

A critical requirement is that users are able to benefit from this rich environment, rather than simply

being overloaded with choices. We address this with an intelligent software agent that transparently and

continually chooses from among available network services based on its user’s individual needs and pref-

erences, while requiring only minimal guidance and user interaction. In this paper, we present an overview

and model of the network service selection problem. We then describe an adaptive user agent that learns

its user’s network service preferences from a very minimal, intuitive set of inputs, and autonomously and

continually select the service that best meets the user’s needs. Results from preliminary user experiments

are presented that demonstrate the effectiveness of our agent.

1 Introduction

Connectivity – ubiquitous, reliable, inexpensive, and essentially invisible wireless access – lies at the heart of

many pervasive computing visions. We ask, how might we bring truly ubiquitous connectivity closer to reality?

This paper presents the design and implementation of an autonomous, cognitive personal agent for wireless

access service selection. The agent performs a critical function within our larger research framework, the

Personal Router. Our work is motivated by two visions – first, that widespread wireless access to the Internet

can be catalyzed by a different economic model than the one currently in place, and second, that an open market

for a new generation of wireless devices and applications can be created by such a wireless infrastructure.
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The first vision is one that links economics and technology. Wireless access requires both a mobile device,1

and a set of base stations with which to communicate. How can this infrastructure of base stations come

into existence? The investment model today is that high-speed wireless LAN’s may be installed by private

organizations within their own facilities, but in the wider area, service must be provided by a large-scale

provider who blankets (or sprinkles) a region or a nation with towers.2

It need not be this way. An alternative is that anyone – small businesses or individuals – can easily put

up local base stations and sell access to the Internet within small regions. With a suitable economic market,

demand would trigger deployment. These small providers, together with today’s large-scale providers and

dedicated institutional networks, would create a rich, responsive, and competitive infrastructure for wireless

Internet access. Our goal is to provide a technical and economic framework in which to explore this option.

Successful realization of this vision depends on a number of technical capabilities. First, it must be possible

for the customer to move transparently and dynamically between different providers and service zones. This

implies that transport layer connections, security associations, and the like survive the transition of the user

from one provider to another. Although these capabilities are not supported gracefully in today’s Internet, a

number of current research and IETF efforts seek to address them.

More interesting is the need for this competitive, dynamic service environment to be presented to customers

in comprehensible terms. It is not enough that the user have a choice between wireless service providers. To

truly benefit, the user, or their agent, must be able to make this choice simply and intuitively, and to re-evaluate

the choice frequently, as service offerings change and the user moves about. Mechanisms that involve manual

intervention, detailed understanding of application service requirements or network QoS offerings, and similar

complexities, are too burdensome to succeed.

What is needed is an automated service selection mechanism, driven by a high-level, intuitive, unobtrusive

capture of the user’s current requirements. This mechanism, by considering the user’s requirements as well

as rules and service descriptions made available by providers, transparently and dynamically selects the most

appropriate provider and offered service at any given time. The development of such a selection framework,

together with its supporting interfaces, mechanisms, and economic models, is a central objective of our re-

search. In this paper we describe our current prototype selection framework, and present some preliminary

experiments that validate its abilities.

1Or perhaps a Mobile Ad-Hoc Network.
2We note that a WLAN hotspot service that offers only the same limited pricing models as a traditional cellular service is but a

small step forward. What is central to our vision is creating richness of competition and business models, not the particular technology

in use. Our work applies equally to a WLAN, 3G, or mixed environments.
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The paper is organized as follows. Section 2 describes the problem, and gives some background on our

models of the user and the network. Section 3 presents the architecture of our agent and its computational

learning model. We present our experimental results in section 4. Section 5 concludes with a brief discussion

of ongoing work aimed at developing a more sophisticated decision agent.

2 The Service Selection Problem

This section provides a conceptual overview of the service selection problem and the structure of the system

we have designed to address it. Figure 2 shows the general relationship between the main elements that impact

the selection decision. The Personal Router (PR) is a physical device that, among other tasks, manages the

network connectivity between a user’s devices and the service providers in his environment. It communicates

with service providers to obtain information about network services, and learns the user’s preferences through

an unobtrusive and intuitive user interface. When the environment changes or the user requests a different

service, the PR makes a new service selection based on the information it has about the network and user. In

the subsections below we describe the research challenges involved in these interactions and the assumptions

we make about them. This lays the foundation upon which the agent architecture in Section 3 is based.

Figure 1: Conceptual Overview of Service Selection

2.1 Network Model

We can imagine many different mechanisms for advertising and selecting services, including negotiation and

auction protocols. Regardless of the mechanism, we represent the set of services available to the PR with the

variable S. This set of available services may change as the user moves to new locations or service providers

change their offerings. Each of the available services x ∈ S has an associated service profile p(x) describing

its features, including both performance and price information.

An ideal definition of a service profile is one for which the user’s perception of a service’s usefulness in
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a particular context is based solely on the features described by the service profile. If this were the case, then

the PR could make accurate selections based only on information in the service profile. In reality, however, it

is not possible to capture all the variables that affect the user’s perception of a service. Therefore we choose

a specific, minimal set of parameters that can be accurately characterized by providers and that are closely

related to the user’s perception of a service.

To describe the performance of a service, we use a two bucket profile [7], describing a service in terms of

its short term and long term burst characteristics. A two bucket profile consists of a token rate ρ, a burst size

β, and a refill interval Trefill (called forced off in [7]) after which the bucket is refilled if it is empty. This

type of profile can describe a wide variety of services useful for different application classes such as email,

web browsing, and real-time voice or video conferencing. Importantly, the two bucket profile description

corresponds well to the quality perceived by users for common activities such as web browsing that exhibit an

on/off heavy-tailed traffic distribution.

Along with quality attributes, service profiles contain information about the price of a service. Service

providers may choose complex pricing models with different initial costs, pricing depending on congestion,

user-specific pricing, and the like. However, in the profile, we consider just two cost attributes, price per

minute cmin and price per kilobyte ckb. The total price ctotal of a service to the user is calculated by applying

these price attributes to the duration of usage t and the quantity of data transferred y according to the equation:

ctotal = cmint+ckby. This corresponds to a “linearization” of the provider’s potentially complex pricing model

over the lifetime of a service profile; if the linearization becomes too inaccurate, the provider can advertise, and

the PR can respond to, a new profile with changed pricing. Combining the quality and cost features described

yields a service profile p(s) = (ρ, β, Trefill, cmin, ckb) for a service s.

An important point is that service providers might not advertise services accurately and truthfully. The task

of validating or estimating accurate service profiles is important to the success of the PR, but is beyond the

scope of this paper. In the present work, we assume that the agent has access to accurate service profiles. We

also assume that the PR can seamlessly switch between available services without disruption using a mobility

solution such as mobile IP [6].

2.2 User Model

Users do not evaluate services purely in terms of the performance and price features of service profiles. Instead,

a user is assumed to perceive services subjectively in terms of two possibly conflicting objectives: quality and

cost. These objectives are also assumed to be dependent on the user’s goals and context. For example, a user
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may consider a high bandwidth, high latency service to have high quality for bulk file transfer but low quality

for videoconferencing.

To accurately select services, we must identify the user’s context. The correct service for the user depends

on what applications are running and the activity of the applications. In order to make the space of user contexts

manageable and to improve performance, we presently take note only of the currently active application. We

assume that a user only cares about the network performance of the current foreground application and define

a user context g as this application.3

Another factor that influences a user’s preferences is their current goals and mindset. If the user just wants

to surf the web and read the news, then perhaps they prefer a low cost service. On the other hand, if they

urgently need to transfer a large file, then they may want a high quality service even if it has high cost. We

model these changing goals with a trade-off between quality and cost objectives, represented by w ∈ [0, 1],

where w = 0 means the user only cares about cost, w = 1 means the user only cares about quality, and values

in between represent intermediate weightings.

We make several (decision theoretic) assumptions about user preferences. First, it is reasonable to assume

that users evaluate services based on subjective quality and cost in a given context. That is, any two services

which they perceive to have the same quality and cost in that context are perceived as equivalent. We assume

that their orderings of services over quality and cost are complete—given any two services, the user can decide

which one has higher quality or that they are indifferent, and similarly for cost. Additionally, users’ cost and

quality preferences are transitive—if service A has higher quality than service B, and B has higher quality than

C, then they perceive A to have higher quality than C. These assumptions allow us to represent their perceptions

of the quality and cost of a service s in context g with quality and cost functions q(g, s) and c(g, s), representing

the user’s orderings over quality and cost. The user perceives service si to have higher quality than sj in context

g if and only if q(g, si) > q(g, sj), and similarly if si is cheaper than sj , then c(g, si) > c(g, sj).

We model a user preferences with a utility function u(q(g, s), c(g, s), w). This efficiently represents user

preferences and enables the agent to reason about the quality and cost of services in different contexts with

different user quality/cost trade-offs. The elicitation and construction of such a function is at the core of not

only the service selection problem, but any decision problem. Classic solutions to this problem (e.g conjoint

analysis) have attempted to achieve this by asking laboratory subjects pairwise questions over a large set of

choices. However, as shown in [3], the dynamicity and combinatorial size of the service selection problem

3This assumption is a simplification. A more complete approach would consider different activities occurring within the same

application, and might consider the needs of background applications as well as the user’s foreground activity. Note, however, that

adopting a more complex model of context can be done without modifying the work described in this paper.
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means we cannot use classical solution concepts for our problem. In fact, the best we can do, given our concern

with usability, is to construct a model of the user’s utility function using sub-optimal information. As we will

show in the next section, these constraints impact the design of the user-interface that carries information from

the user to the agent and vice-versa.

Finally, as mentioned earlier, the service profile does not capture all the factors that influence user perceived

quality and cost. However, service profiles are still useful for predicting the value of new services if we assume

the service profile features are partially correlated with q(g, s) and c(g, s).

3 Agent Architecture

We decompose the service selection problem into four parts: 1) Devising an intuitive, effective user interface

to elicit feedback useful for agent decision-making; 2) Accurately evaluating services in terms of their user

perceived characteristics to help learn the value of the agent’s actions; 3) Deciding when to change services

and which service to select based on the user’s preferences, context, and goals; and 4) Correctly predicting

the value of new, previously unseen services based on previous observations. The solutions to each respective

subproblem are then modularized in to the following set of components, implemented as the agent architecture

(see Figure 2): 1) the user interface (UI), 2) a service evaluator, 3) a service change controller, and 4) a service

value predictor. Together, these components allow the PR to learn the value of services from user feedback,

adapt to changing user needs, and also estimate the value of new services.

3.1 User Interface

As mentioned above, the design of the user interface is constrained by human factors such as ease of use and

intuitiveness. The simplest approach is to only have one input: satisfaction or dissatisfaction with the current

service. This has the advantage of making service evaluation easier since the PR does not need to track quality

and cost separately. However, it fails to capture the user’s dynamic quality/cost weighting. Thus we allow the

user to not only express whether or not they are satisfied with the current service, but also whether they desire

a higher quality or lower cost service. If the user is dissatisfied with a service, it is either because it has low

quality or high cost. Therefore the UI provides two buttons for the user to express their feedback r about the

current service: a better button to indicate r = better, expressing dissatisfaction with the current service’s

quality level and requesting a higher quality service; and a cheaper button for r = cheaper, expressing

dissatisfaction with the current service’s cost and requesting a lower cost service. If the user is satisfied with

a service, they need not do anything (r = sat), expressed as no button presses for some period of time. We

6



Change
Controller

Evaluator

Predictor

UIUser Service
Providers

F
q
(g,s),F

c
(g,s)

s, g, ∆c, ∆q

s, g, ∆c, ∆q

s, g, ∆w, ∆e

V
q
(g,s), 

V
c
(g,s), e Service

Request

User
Input

Available Services S

Service Profiles p(S)

s: current service
g: user context
∆c: change in cost estimate
∆q: change in quality estimate
∆w: change in quality/cost weighting
∆e: change in exploration level
e: evaluator exploration level

V
q
(g,s): quality estimate

V
c
(g,s): cost estimate

F
q
(g,s): quality prediction

F
c
(g,s): cost prediction

Figure 2: Agent Architecture

assume that the longer the user waits before pressing a button, the more likely they are to be satisfied they with

the quality and cost of that service.

If the user inputs r = better, it is due to one or both of the following reasons: either the user’s perceived

quality of the service q is lower than the PR’s estimate, or the user’s quality/cost weighting w has increased.

To the extent that the button press is due to low q, the evaluator needs to update its quality estimate for the

service. To the extent that w has increased, the change controller must choose higher quality services. Similar

reasoning applies to r = cheaper.

The user’s willingness to try new services may change as well. The UI may provide a means for the user to

express this change via explore more and explore less buttons, a slider, or attempt to infer it from their behavior.

Therefore from an input r the UI needs to generate four outputs, ∆q, ∆c, ∆w, and ∆e, the amount to change

the quality estimate, cost estimate, quality/cost weighting, and exploration level, respectively.

To help the user make their decisions, the UI also needs to give feedback to the user about critical, but

otherwise hidden, parameters such as the cost of a service. Too much feedback is detrimental; giving detailed

technical information about each service is likely to distract and confuse the average user. On the other hand,

without any feedback at all the user has no basis on which to compare services and decide which one they

prefer out of the choices available.
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The user must be able to at least identify which service is currently in use and how much it costs. The

current service may be indicated using a name, description, or other identifier. There are many possible ways

to give feedback about cost, including cumulative cost, estimated cost per unit time, and estimated cost per

byte.

3.2 Service Evaluator

The function of the evaluator module is to learn individual user preferences in many different contexts, based

on user feedback. In particular, the task of the evaluator is to estimate this perceived quality and cost for each

service and activity. For each service s and user context g experienced by the PR, the evaluator maintains

quality and cost estimates Vq(g, s) ∈ [0, 1] and Vc(g, s) ∈ [0, 1], where 0 corresponds to the worst possible

quality or cost (slow or expensive) and 1 is the best (fast or cheap). Since these estimates should be based

purely on the user’s perception of the service, they are calculated from the ∆q and ∆c UI outputs and not

on any information in the service profile. The evaluator is adaptive, meaning its estimates of cost and quality

improve as it receives more user feedback. We implement this adaptation with reinforcement learning [5].

The evaluator’s confidence in its learned estimates can be communicated to other agent modules through an

exploration value e, allowing it to request more exploration (from the change controller module (see below)

when untried services exist and less exploration when it has greater confidence in its estimates.

3.3 Change Controller

The function of the change controller module is to decide when to switch services and which services to select

given information from the service evaluator and from the user interface. This switching choice is regulated

by the user’s context, the user’s weighting between quality and cost, as well as the amount of exploration the

user will tolerate. Since user utility is a function of perceived quality and cost and a quality/cost weighting w,

the change controller must have an estimate of w and an approximate utility function to select services. The

change controller estimates the quality/cost weighting based on ∆w inputs and then applies a linear (additive)

utility function to the perceived quality and cost of each available service. It then makes selections based on

a stochastic function of these utilities. Since the consequences of sub-optimal decisions are minimal (given

micro-payments) the change controller may occasionally select a service with lower estimated utility in order

to improve the evaluator’s estimates. Some amount of exploration accelerates the learning process, but too

much exploration results in suboptimal selections [1]. The exploration level of the service evaluator and ∆e

from the UI affect this balance.
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3.4 Service Value Predictor

Finally, to improve performance when previously unseen services are encountered, the PR forms a model of

user utility to predict the value of new services based on the ∆q and ∆c outputs from the UI and the current

service profile. The task of the predictor is to approximate user perceived quality and cost as closely as possible

given a limited number of observations about their behavior and service profiles. This assumes that there exist

functions fq(g, p(s)) and fc(g, p(s)) correlated with the user perceived quality q(g, s) and cost c(g, s) of a

service s. The predictor attempts to approximate these functions fq and fc based on previous observations.

Since the predictor is only used for the initial estimate, predictions need not be completely accurate. As long

as its estimates allow the PR to make better than random selections, the predictor can improve performance.

We chose a multi-layer neural network (MNN)[4] to compute the solution to this approximation problem.

MNNs were chosen because there exists a tractable and optimal training algorithm (back-propagation) which

can approximate any arbitrary utility function. Therefore in our implementation, when the PR encounters new

services it attempts to approximate the user’s utility function using a two-layer feed-forward neural network.

The PR trains the predictor on the ∆q and ∆c UI outputs, the current service profile, and the current activity. As

the neural network receives more training data, its predictions will improve. Since the neural network requires

a substantial amount of training data before it becomes useful, the PR does not use it until it has accumulated

enough observations. Once the predictor is activated, the evaluator can use it to initialize its quality and cost

estimates for a given service and activity.

4 User Experiments

To evaluate the adequacy of our approach, we tested the agent’s ability to learn user preferences in a static

and dynamic service environments in a series of short term controlled user experiments. These preliminary

experiments had two objectives. The first was to determine if the PR performs its function correctly, learning

user preferences and selecting appropriate network services. Secondly, we assessed the usefulness of automatic

service selection in the PR compared to manual selection.

Our experiments confirm that the PR can learn user preferences and select services effectively. The agent

also performed similarly to manual selection on average, but required less user interaction to select a good

service and reduced variance. The data we collected also gave us valuable insight into how users interact

with the PR in realistic situations, helping us further tune and improve the system. More studies are needed

to conclusively determine the usefulness of the PR, however. The goal of these experiments instead were

to identify important general trends that can then be formulated as hypothesis which test a causal model of
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interactions [2]. The experimental setup, procedures and results are discussed below.

4.1 Experimental Setup: Network and Users

The set of available services were generated using traffic shaping in a software router. Services were defined

by four features: average data rate, cost per minute, and cost per kilobyte. These features were chosen because

we assumed they are the easiest for users to perceive in the short time frame of the experiment. The values

of these features were chosen to mimic a range of realistic network services, from inexpensive low quality

services to expensive high quality services. We chose to use seven quality levels, corresponding to bandwidth

levels commonly encountered by users in current 802.11b and broadband, modem, and cellular data networks:

11Mbps, 1Mbps, 384Kbps, 128Kbps, 56Kbps, 28.8Kbps, and 9600bps. Costs were set so that the user must

choose services carefully to avoid expending all their credits.

Eight services were available in three simulated locations. For each location there was exactly one optimal

service that allowed the user to complete the experiment objectives. All other services were either too costly

or too slow. Eight services were chosen because it is a large enough number to make the task of correct service

selection hard enough for the subjects while enabling the PR to learn service values within the time frame of

the experiment.

Subjects were 17 students and staff of the MIT Computer Science and Artificial Intelligence Laboratory.

Subjects were rewarded for their participation with $10 to $20 based on their performance.

4.2 Procedure

In order to evaluate the ease of use and effectiveness of the agent and user interface the performance of the

PR was benchmarked against a manual selection policy. Subjects were randomly assigned to one of two

groups: 1) the control group where subjects had to choose between services manually by selecting from a

menu displaying the available services and their features and 2) the test group where subjects used the PR to

select between services, requesting services using the better and cheaper buttons described earlier. The final

distribution of subjects to groups was 8 control and 9 test conditions.

An experiment consisted of three phases. The first phase controlled for task learning effects. Subjects were

given ten minutes to become familiar with the user interface, the procedure and the available services. The

second phase consisted of a static configuration of all eight services for a particular location and tested how

well the PR can learn an estimate of user preferences (estimation tests). The third phase was identical to the

second phase but tested for the adequacy of the selected choices when the set of available services changed
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from the set available in the second phase (prediction tests). Within each phase the subjects had to complete

one or more tasks. For each task, the subjects had to use a web browser to fully load a series of ten web pages

within five minutes while selecting a service using the mechanism designated for their group. Each web page

contained four large image files. We chose this task because it approximates the network usage of a typical

subject shopping or looking for information on-line and makes use of the network service in a realistic and

familiar way. Subjects were instructed that they would be charged for their network usage based on the cost of

the current service. The task performance of the subjects was given by the dependent variable score, measured

as the number of credits expended during that task.

In each phase the simulated location and the set of available services changed. In Phase 1 the subject was

placed in Location 1 and was asked to perform their downloading task twice for practice. In Phase 2, the PR

was reset and the subject chose services from Location 2. The subject was given two attempts at their task and

was instructed to try to minimize their score. Finally in Phase 3, the user attempts to minimize their score in

Location 3.

4.3 Results

Figure 3 shows the summary statistics for experiments that measured the adequacy of the agent’s estimation

and prediction learning mechanisms. Correlation were measured between independent variables DataRate and

Costs (measuring the amount of bandwidth and costs respectively) and dependent variables quality and cost

valuation as perceived by the user in Phases 2 (estimation) and 3 (prediction) trials. The high correlations

between the variables across both phases suggests that the PR can indeed learn both the quality and cost values

based on user feedback (in Phase 2) as well as predicting, although less accurately in Phase 3, the value of new

services as they become available (in Phase 3). We expect that cost predictions would take longer to learn in

Phase 3 since there are three service profile features affecting cost while only data rate affects quality. These

results suggest that the predictor can provide useful estimates when services change, but may require more

time to learn before it can produce more reliable results.

Phase 2 (Estimation) Phase 3 (Prediction)

Quality,DataRate r2 = 0.793 r2 = 0.946

CostValuation,Cost r2 = 0.931 r2 = 0.438

Figure 3: Correlation Coefficients for Learning Service Estimates and Predication

Figure 4 shows the sorted and ranked distributions of score percentiles across PR and manually selected
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services in phase 2 trials. The value plotted is the score under which a given fraction of the subjects scored.

The left-most data points are the lowest score for that try (hence better, since the goal of the subject was to

minimize expenditure) and the right-most data point is the highest score.
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Figure 4: Ranked and Sorted Distribution and Statistics of Scores in Phase 2. A: PR Selection. B:Manual selection.

Try 1 Try 2

PR Manual PR Manual

Mean 1484 1676 1434 1600

Median 1564 1813 1318 1659

SD 360.7 722.0 616 747

Variance 130130 521330 379550 557940

Table 1: Moments of the Distributions

The results suggest that compared to manual selection (Figure 4 B) the PR achieves comparable scores in

Phase 2 but with lower variance (Table 4.3). Figure 4 A shows that the performance of subjects who used the PR

improved in the second task of Phase 2. In Phase 2, the PR improves the score achieved at almost all percentiles.

Figure 4 B shows that there is no such improvement within Phase 2 with manual selection, suggesting that the

change results from better estimates. Given more time to learn, we expect that the performance of the PR will

improve further.

Figure 5 A and B show the observed duration of usage of each of the available services in Phases 2 and

3 as a fraction of total usage time respectively. The data shows that both the subjects who used an agent and
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Figure 5: Duration of usage of services in: A. Phase 2. B: Phase 3

subjects who used manual selection chose the best service more frequently than other services. In Phase 2,

using service 2 results in the best score. In Phase 3, service 7 is best. The figures show that both approaches are

capable of identifying and selecting the best service. However, the data suggests that the agent does not choose

the optimal service as frequently as under manual selection. Two possible causal hypothesis are: 1) the agent’s

learning is suboptimal for the given limited number of trials (therefore performance should increase with more

trials) and 2) the reward or utility models of the change controller are incomplete or inaccurate.

A B C

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

C
re

d
it
s
 e

x
p
e
n
d
e
d

Percentile

PR
Manual Selection

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

C
re

d
it
s
 e

x
p
e
n
d
e
d

Percentile

PR
Manual Selection

 0

 500

 1000

 1500

 2000

 2500

 3000

 0  10  20  30  40  50  60  70  80  90  100

C
re

d
it
s
 e

x
p
e
n
d
e
d

Percentile

PR
Manual Selection

Figure 6: Distribution of scores in: A) Phase 2 Try 1. B) Phase 2 Try 2. C) Phase 3

Figure 6 A, B and C show the observed distribution of scores by percentile in Phases 2 and 3 for both the
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PR and manual selection. The observed mean of scores with PR selected services for try 1 and 2 in phase 2

were 1480 and 1430 respectively, with standard deviations of 361 and 616. Conversely, the observed mean of

scores for manual selected services for try 1 and 2 in phase 2 were 1680 and 1600 respectively, with standard

deviations of 722 and 747. The observed mean of scores for PR and manually selected services in phase 3 were

1680 and 1090 respectively, with standard deviations of 1120 and 713. The data shows that the average score

achieved by subjects who used the PR is slightly better than that of subjects who used manual selection in Phase

2. In both tries of Phase 2 PR using subjects significantly reduced the variance in their scores, with scores in

low and high percentiles closer to the mean. This suggests that service selection guided by the agent provides

a more predictable and consistent experience across subjects. In Phase 3, however, the score varied widely

for different subjects, with some subjects scoring extremely well and others doing poorly. An examination of

the data log revealed that this disparity results from differences in usage during Phase 2. Some subjects were

able to train the PR better than others during Phase 2, enabling the agent to make better selections in Phase

3. This suggests that as subjects become more experienced at using the PR, the agent’s performance improves

substantially. More experiments are necessary to conclusively determine the usefulness of the PR compared to

manual selection.

Verbal feedback from subjects regarding their experience was also collected. Subjects of the manual selec-

tion mechanism remarked that it was difficult to remember the features of the different services. This suggests

that even if the PR performs similarly to manual selection, users may prefer it simply because it requires less

cognitive effort to use. In this experiment we used only eight services per location, but in locations with many

more services available we expect users would have an even greater preference for automatic service selection.

5 Conclusions and Future Work

A major challenge in any communication-rich environment is selecting the best network access service for a

user’s needs. To address this usability problem in service selection we introduced the concept of the Personal

Router agent. AI based techniques were used to design an autonomous adaptive agent for learning user prefer-

ences in realistic network environments and for different activities. The developed agent was then empirically

tested in a series of exploratory experiments that assessed the learning capabilities as well as the comparative

performance of users using the PR and manual service selection in a number of experimental settings. We found

positive learning effects and statistical and cognitive benefits for autonomous service selections performed by

the PR.

We plan to refine the work presented here in several dimensions. First, we continue to empirically evaluate
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different learning algorithms for more complex models of the PR in environments with different numbers of

services available, changing user contexts, more complex network services, uncertainty in network services,

and changing user goals. We plan to perform long-term user studies to determine if performance improves as

users become more skilled at using the PR and the agent collects more observations about user preferences.

Finally, after achieving a satisfactory level of performance for the agent we plan to extend the single agent

decision mechanism to multi-agent systems (MAS) using peer-to-peer networks, including the exploration of

distributed reputation, gossiping, epidemic and/or collaborative filtering mechanisms. This information can

help the PR initialize and verify the accuracy of service profiles or estimate user preferences.

Finally, we note that our approach of using an unobtrusive learning agent to make decisions for the user

facing a complex environment applies to problems beyond wireless network service selection. We believe that

as computing environments becomes more rich and pervasive, users will increasingly face this situation. We

see a growing need for intelligent agents similar to the PR that can both learn individual user preferences and

act on a user’s behalf without disrupting or distracting them, and believe that the results of our research will

provide useful progress in this direction.
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[1] M. Balabanović. Exploring versus exploiting when learning user models for text recommendation. In User

Modeling and User-Adapted Interaction, volume 8, pages 71–102. Kluwer Academic Publishers, 1998.

[2] P. R. Cohen. Empirical Methods for Artificial Intelligence. MIT Press, Cambridge, MA, 1995.

[3] P. Faratin, G. Lee, J. Wroclawski, and S. Parsons. Social user agents for dynamic access to wireless

networks. In Proceedings of AAAI Spring Symposium on Human Interaction with Autonomous Systems in

Complex Environments, Stanford, CA, US, 2003.

[4] S. Haykin. Neural networks: a comprehensive foundation. McMillan, N.Y., 1994.

[5] L. Kaelbling, M. Littman, and A. Moore. Reinforcement learning: A survey. Journal of Artificial Intelli-

gence Research, 4:237–285, 1996.

[6] C. Perkins and K. Wang. Optimized smooth handoffs in mobile IP. In Proceedings of the IEEE Symposium

on Computers and Communications. 1999.

[7] X. Yang. Designing traffic profiles for bursty internet traffic. In Proceedings of IEEE Global Internet,

Taipei, Taiwan, 2002.

15


