
AI in Wireless Networks: The Personal Router Agent for Wireless Access

P. Faratin and G. Lee and J. Wroclawski
Laboratory for Computer Science

M.I.T
Cambridge, 02139, USA
{peyman,gil,jtw}@mit.edu

S. Parsons
Department of Computer and Information Science
Brooklyn College, City University of New York

NY,11210, USA
parsons@sci.brooklyn.cuny.edu

Abstract

Elicitation of user preferences has been recognized
to be one the most important goals of user-centered
AI systems. Solutions to this problem have been
cast as a utility function construction problem to
adaptive classi£cation given classes of utility func-
tions, to sequential decision making. In this pa-
per we present the preference elicitation problems
involved in dynamic user access to wireless net-
works. We propose an interactive, adaptive agent-
based solution to the problem and show how the
full nature of the problem can be represented within
a Markov Decision Process (MDP). Adaptive rein-
forcement learning solutions are then evaluated for
two subclasses of tractable MDPs via simulations
of some representative user models.

1 Introduction
AI components are increasingly being embedded within com-
plex user-centered systems as autonomous problem solving
modules. In this paper we present an application of AI within
the domain of future wireless networks. In particular, in con-
trast to the vertically integrated structure of the current In-
ternet, we seek enabling technologies and policies for future
wireless networks where more complex network services can
be represented and traded amongst multiple buyers and sell-
ers in a dynamic market.

In this paper we will illustrate the potential of AI solu-
tions for this overall goal by presenting an adaptive personal
agent system, called the Personal Router (PR), that solves one
dimension of nomadic user access problem to wireless net-
works (see [Faratin et.al., 2002] for a full problem descrip-
tion). The problem dimension of interest is referred to as the
Autonomous User Modeling (AUM) problem. Informally,
the AUM problem is stated as the problem of autonomously
modeling a nomadic user’s preference for different wireless
services, where services, like goods in a market, are offered
by multiple sellers and which may have multiple dimensions.
Once derived this information model can subsequently be
used as input for dynamic or single shot optimization, de-
pending on the type of market protocol the agent is currently
trading in.

We frame the AUM problem as an adaptive (feedback) con-
trol problem where a personal agent (a controller) takes adap-
tive actions (control signals) in an environment (a control sys-
tem) to achieve its goals. Furthermore, as opposed to the
classic approaches where a single optimal decision is made
after eliciting the complete preference structure of the user
[Keeney and Raiffa, 1976], the goal of the agent is to £nd
an optimal strategy over sequences of decisions over time,
where the sequence is composed of elicitation followed by
decision making processes. In such a user-agent coupling,
initially user perceived sub-optimal agent decisions can be
improved over time with additional information acquired by
elicitation. A sequential decision making approach is adopted
because the dynamic decision environment creates a barrier
for obtaining a priori information about the user and the user
cannot be engaged in a costly elicitation process similar to
traditional solutions. Minimal user interaction during prefer-
ence elicitation is also sought by Chajewska et.al. where the
UM problem is viewed as a classi£cation problem [Chajew-
ska et.al., 2000]. A myopically optimal elicitation strategy
is constructed to ask the single query with the greatest ex-
pected value of information with respect to a distribution of
clusters of utility functions. The uncertainty over this dis-
tribution is then re£ned as users answer queries. However,
the hillclimbing nature of myopic strategy can fail to ask ap-
propriate questions because future values are neglected when
determining the value of current questions. Boutilier’s ex-
tension of the above model to a Partially Observable Markov
Process (POMDP) [Boutilier, 2002], implements a sequential
decision problems with multistage lookahead. However, al-
though also modeling the elicitation process as a sequential
decision making problem this model assumes a priori belief
model (although any arbitary model) for optimization.

Generally, we are interested in cost and bene£t trade-offs
involved between perfect information for a single optimal de-
cision mechanism against imperfect information and subopti-
mal but iterative and adaptive mechanisms. In this paper we
propose a state-based model that approaches the latter mech-
anism.

The paper is organized as follows. A general description
of the PR problem is brie¤y described in the £rst section. We
then present a formal model of the service selection problem.
Next we show how the full problem description can be com-
putationally represented within a Markov Decision Process.



This is followed by two simpler MDP models of the PR prob-
lem that are motivated by the intractability of the fully dimen-
sioned model. Next we review how reinforcement learning
algorithms can be used to solve the agent’s action selection
problem. The behaviours of these algorithms are then shown
in a set of user model simulations. Finally, we presents our
conclusions together with the directions of future research.

2 The Personal Router

Optimal decision making requires access to a well de£ned
preference structure of the decision maker that gives a mean-
ingful ordering to the set of possible outcomes. Tradition-
ally, a solution to such user modeling problems are formu-
lated within the classical utility analysis framework, such as
conjoint analysis [Keeney and Raiffa, 1976]. However, al-
though useful for most static and tractable domains, decision
analysis techniques are inappropriate in wireless networks
due to the complexity in and dynamicity of the user’s con-
text [Faratin et.al., 2002]. The user context is de£ned by:
a) the user’s goals (or activities—e.g. arranging a meeting,
downloading music), b) the class of application the user is
currently running in order to achieve her goals (e.g. reading
and sending emails, £le transfer), c) her urgency in using the
service and d) her location (e.g nomadic or stationary). This
context is highly complex not only because a user may have
multiple concurrent goals/activities but also because differ-
ent elements of the user context (goals, locations, running
applications, etc.) may change at different rates. Indeed,
we claim that such complexities necessitate a personal agent-
based approach because on-line agents can learn user’s pref-
erences over time rather than requiring users to participate in
an unrealistic and expensive elicitation process. For example,
the set of service choices (or outcomes) can change dynam-
ically when current network connection(s) instantly become
unreachable as mobile users change locations. Alternatively,
preferences themselves can also be dynamic where different
services may be needed as users dynamically change and be-
gin different tasks. In addition to the complexity of the user
context there exist additional barriers for traditional prefer-
ence modeling approaches. For example, due to cognitive
costs and nomadic nature of wireless access users may be re-
luctant to engage in costly communications over their pref-
erences, especially if the elicitation space is combinatorially
large. In the worst case users may be ignorant of their prefer-
ences, a real possibility with network services which the user,
unlike common goods such as bread or milk, has little or no
experience of in order to form a preference over. Indeed, in-
tangibility of network services may necessitate a trial period
before the user can begin to form preferences. Furthermore,
there exists an inherent variability in the network itself result-
ing in uncertainties by both the buyers and the sellers of a
service as to the guarantees that can be made over the qual-
ity of a service (QoS). To overcome this uncertainty users are
therefore given a user interface to manipulate service features
as free variables via better and cheaper buttons on the PR
respectively. The assumption we make is that the user will
choose better or cheaper services if the current selected ser-
vice is either of poor quality or high price respectively. This

process of interaction with the PR may continue until the PR
learns to select a service that satis£es the user’s current tasks
and goals. Note, that because of relatively low wireless ser-
vice prices we assume users are tolerant to suboptimal de-
cisions in service selection because the (monetary) cost of
decision errors is low.

3 Problem Representation as a MDP
A representation of the PR that fully modeled the complexity
and dynamic nature of the problem within the Markov De-
cision Process (MDP) modeling framework was presented in
[Faratin et.al., 2002]. Brie¤y, an MDP is a directed acyclic
graph composed of a set of nodes and links that represent the
system states S and the probabilistic transitions L amongst
them respectively [Kaelbling et.al, 1996]. Each system state
S ∈ S represents the information available to the decision
maker and is speci£ed by a set of variables that describe the
states of the problem to some degree of speci£city. In our
problem system state S ∈ S is constructed by the conjunc-
tion of: a) the user context (cg = 〈βg, γg, δ〉) current running
applications, user deadlines and locations for goal g respec-
tively, b) the set of pro£les available in the current location
(P δ) and c) the user interaction with the PR, which we will
represent by the variable I . Therefore, a complete description
of a system state at time t is represented by the conjunction
St = (βg, γg, t, locg, P, I).

The other element of a MDP is the set of possible actions
A. Actions by either the user, the PR or both will then results
in a state transition, that change the values of the state vari-
ables, to another state in the set of all possible states S. In
an MDP these transitions are represented by links L between
states that represent the transition of a system state from one
con£guration to another after performing some action. In our
problem the set of actionsA available to the user u are de£ned
by the set Au = {∆loc,∆app,∆I , φ}, representing changes
in the user location, set of running applications, service qual-
ity and/or price demand and no action respectively. The con-
sequences of user actions are changes in values of state vari-
ables.

In a negotiation mechanism the actions of the agent can be
to increase/decrease in each, or product of, decision variable.
For example, if the decision variables are price and bandwidth
of a service then APR = {LBW,HBW,LP,HP, φ}, where
the elements correspond to a request for a service with a lower
bandwidth, higher bandwidth, lower price, higher price and
no action respectively. As mentioned above, because the state
of the network is uncertain the consequences of the agent ac-
tions are indeterministic. To model this the transitions be-
tween states in the MDP are probabilistic. Therefore there
exists a probability distribution Praj

(Sk|Sj) over each ac-
tion aj reaching a state k from state j.

We can also compute the utility of a service pro£le i in con-
text c for goal g (or uc

g

(Pi)) as the utility of being in a unique
state whose state variables (βg, γg, t, locg, P, I) have values
that correspond to service i in context c = {βg, γg, t, locg}.
The utility of this corresponding state, say state m, is then
referred to as U(Sm).

Optimal reasoning with an MDP (or user modeling in our



problem) in turn is de£ned as £nding a policy π or a func-
tion that maps the from each state to an optimal action. If
the MDP model (transition probabilities and state utilities) is
given then exact methods such as dynamic programing can
be used to solve the MDP by computing the expected values
of each action at each state recursively from the £nal state.
However, exact methods are inappropriate for our problem
because a) the transition probabilities are not given a priori
and b) the horizon of the state space can be in£nite because
the personal agent is assumed to be on-line and continuously
making decisions. Below we propose adaptive mechanisms
for updating model estimates over a reduced state space.

In general MDPs suffer from the “curse of dimensional-
ity”, where the state-space grows exponentially in the size of
the variables. As a result it is impractical to consider learn-
ing the highly expressive model given above. The strategy
we adopt to overcome this problem is to incrementally search
for a computationally tractable MDP model that increas-
ingly approaches some acceptable level of expressiveness, de-
rived through ecological experiments. Different expressive-
computational trade-off regimes can then be constructed that
range from single state MDPs, with coarse state signals, to
richer state signal MDP, described above, each with relatively
different expressive and predictive power. The natural ex-
pectation, veri£able through ecological experiments, is that
richer models result in more adequate behaviours because
they can form better associations of states to actions (or poli-
cies) than simpler non-associative models. In the remainder
of the paper we describe the £rst step in this strategy where
the complex state-space of the above MDP described is “col-
lapsed”, through disjunction of all of the states, to either a
single state signal or a slightly more complex state signal con-
sisting of service pro£les. We show how the former reduced
problem is equivalent to the k armed bandit problem and re-
view heuristic solution methods for both classes of problems
based on reinforcement learning. Finally, we evaluate the ad-
equacy of the model through simulations.

4 Single State PR—a Bandit Problem
The computationally simplest model of the PR problem is to
cast the agent action selection problem as a k armed ban-
dit problem. Bandit problems have been extensively studied
in statistical and mathematical literatures with application to
medical diagnosis and sequential decision making in general.
In this class of problems an agent has a choice of pulling one
arm of a k-armed bandit machine at each time step. When
the arm i of machine is pulled the machine pays off 1 or 0
according to some underlying probability pi, where payoffs
are independent events and unknown to the agent. The game
often has a £nite horizon where the agent is permitted to pull
h pulls. The goal of the agent is to select a policy that maxi-
mize some function of the total expected payoffsRt, typically
given by Rt = E(

∑h
t=0 rt), where rt is the payoff or reward

at time t.
Similarly, we model the PR problem as a single state in£-

nite horizon MDP where at each discrete time the agent takes
an action (pulls an arm i), receives a reward from the user
for its action and returns to the same state. Generally, the

size of k, or the number of the arms of the bandit machine, is
determined by the rules of the market mechanism the agent
is trading. Thus in a negotiation mechanism the set of agent
actions, or agent’s strategy space, at each state is given by
APR = {LBW,HBW,LP,HP, φ}. That is, under such
a mechanism the agent is playing k = 5 one-armed bandit
machines. Furthermore, since we are interested in continual
learning of user preferences the goal of the agent is to max-
imize its total rewards over long-run, or in£nite horizon, of
the game. The reward model in turn is constructed from the
actions of the user with the agent through the interface and
not the environment. Thus, we only consider a subset of user
actions Au = {∆I , φ}, where ∆I is changes in price and
bandwidth demands (or “cheaper” or “better” button presses
respectively) by the user and φ is no action. We map these
user actions to binary agent reward values using the simple
binary rule of rt = +1 if φ else rt = −1, representing posi-
tive rewards for lack of user intervention. We model the user’s
preferences for different agent actions by a reward probabil-
ity distribution with mean Q∗(ai) for each action ai. Finally,
if this probability distribution is constant over time then we
say that the user’s preferences is stationary. Conversely, if the
distribution of the bandit changes over time then the user’s
preferences is said to be non-stationary. We represent the lat-
ter with two parameters: (θ, η), the frequency and magnitude
of change in Q∗(ai) respectively.

There exist a number of solutions for solving the op-
timal policy for the bandit problems, including dynamic-
programming, Gittins allocation indices and learning au-
tomata [Kaelbling et.al, 1996; Sutton and Barto, 2002]. How-
ever, although optimal and instructive these methods are
known not to scale well to complex problems [Kaelbling et.al,
1996]. Because our goal is to incrementally increase the com-
plexity of the problems, and also because the “forgiveness” of
the user to the suboptimal decisions, we instead concentrate
on heuristic action selection techniques that, although are not
provably optimal, are nonetheless tractable and approximate
optimal solutions. Furthermore, as mentioned above, optimal
techniques compute optimal policies given a model (model
of the process that generate Q∗(ai)). In the absence of this
information the agent must form estimates over and update
the value of each action. Therefore, the problem of action
selection requires both a learning phase followed by action
selection phase.

One popular method for updating the values of Qk+1(ai),
estimates for Q∗(ai) for action i after k rewards is the expo-
nential recency-weighted average:

Qk+1(ai) = Qk(ai) + αk(ai)[rk+1(ai)−Qk(ai)] (1)

where 0 < αk(ai) ≤ 1 is the step-size, or learning, pa-
rameter for action ai after k selection. If αk(ai) = 1/k then
the learning rate varies at each time step. Under this condi-
tion the update rule 1 implements a sample average method
[Sutton and Barto, 2002].

The next step in solving the bandit problem is to select an
action given an estimate of value of actions. We compare the
behaviour of three action selection strategies givenQk+1(ai):
greedy, ε−greedy and softmax. The £rst strategy exploits



the current agent knowledge by selecting that action with the
highest current value estimate: a∗i = arg maxaQt(ai). Con-
versely, as the horizon of interaction increases then it may be
more bene£cial to explore the action space since higher val-
ued longer term rewards may be biased against by lower val-
ued shorter term rewards (expressed as non-linearity in the
optimization objective function). Exploration, or probability
of selecting action a at time t, (Pt(ai) may be at some con-
stant rate, ε or given by a Gibbs, or Boltzmann, distribution:

Pt(ai) =
eQt(a)/T

∑n
a′∈A e

Qt(a
′ )/T

(2)

where the temperature T cools at rate µ with time t according
to the equation Tt = T0 (1− µ)

t. Action selection strategies
with constant and variable values of ε are referred to as ε-
greedy and softmax strategies respectively.

Learning the best action can also be achieved not by main-
taining estimates of action value but rather an overall reward
level, called the reference reward, that can be used as a de-
cision criteria. Techniques based on this method are known
as Reinforcement Comparison (RC) methods, precursors to
actor-critic methods [Sutton and Barto, 2002]. In RC a sepa-
rate measure of action preference for each action at t play of
the bandit, ρt(a), is kept that are used to determine the action-
selection probabilities according to softmax rule 2. The pref-
erences are updated as follows. After each play of the bandit
the preference for the action selected on that play, at, is in-
cremented by the error signal between the reward rt and the
reference reward r̄t, by ρt+1(at) = pt(at)+α[rt− r̄t], where
α is a positive step-size parameter. Unlike action-value up-
dates, the reference reward is an incremental average of all
recently recieved rewards independently of the action taken:
r̄t+1 = r̄t + α[rt − r̄], where 0 < α ≤ 1 is again some
learning rate.

Finally, in Pursuit methods (PM) both action-value and
action-preferences are maintained where the action prefer-
ences “pursue” the action that is greedy according to the cur-
rent action-value estimate [Sutton and Barto, 2002]. If πt(a)
represents the probability of selecting action a at time t, deter-
mined through softmax, and a∗t+1 = arg maxaQt+1(a) rep-
resents the greedy action at play t+ 1 then the probability of
selecting at+1 = a∗t+1 is incremented by a fraction β toward
1: πt+1(a

∗

t+1) = πt(a
∗

t+1)+α[1−πt(a
∗

t+1)]. Then the prob-
abilities of selecting other actions are decremented towards
zero: πt+1(a) = πt(a) + α[0− πt(a)] for all a 6= a∗t+1.

5 Multi-State PR Problem
As the next step, we consider a multistate model of the PR
problem. In the single state bandit problem described above,
the expected reward received depends solely upon the current
agent action. In our multistate model, the amount of reward
is based upon both the agent action and the current service
pro£le, allowing us to model the agent’s attempts to learn the
user’s utility function over the space of service pro£les.

Formally, we model the PR as a deterministic MDP with
states s ⊂ P δ, the set of currently available service pro-
£les. In order to model the trade-off between quality and cost,

we de£ne a service pro£le as a vector of two features (b, h),
where b represents bandwidth and h cost. For simplicity, we
constrain quality and cost to the set of nonnegative integers.

The set of possible agent actions APR remains the same as
before, but in the multistate model the current service pro£le
may change after every agent action. This transition function
is deterministic and assumes that the agent gets the service
pro£le it requests if it is available. For instance, If the state
s at time t is (bt, ht), the agent selects action LBW , and
(bt − 1, ht) ∈ P δ, then st+1 = (bt − 1, ht). If the desired
service pro£le is not in P δ, then the state remains unchanged.
By limiting agent actions to the £xed set APR, we reduce the
complexity of the agent while still enabling the exploration of
the full set of services available.

As in the single state model, at each time step the agent
receives a reward r ∈ {1,−1} depending on the user action
Au. The user action probability distribution p(si) is based on
the utility U(si) of the current service pro£le si. We model
user utility with the linear function U(q, h) = wqq + whh,
where wq > 0 and wh < 0, expressing a desire for high
bandwidth and low cost. This utility function is easy to com-
pute while still allowing the description of a wide range of
user preferences.

This multistate model is a natural extension of the single
state MDP model described earlier. Though the service pro-
£les and user utility functions in this model have been chosen
for ease of computation, the multistate model provides a sub-
stantially more detailed view of the interactions between the
agent and its environment, capturing the relationship between
user utility and user actions as well as the effect of agent ac-
tions on the current service pro£le.

Due to the multistate nature of this model, however, the
approaches for solving the single state bandit problem cannot
accurately learn the optimal agent actions. The bandit solu-
tions can learn which action yields the greatest reward for any
given state, but in order to maximize the total return the agent
must take into account the value of other states as well.

Possible solutions for this problem include dynamic pro-
gramming, Monte Carlo methods, and TD learning [Sutton
and Barto, 2002]. Dynamic programming is not appropri-
ate because the rewards at each state are not known a priori.
Monte Carlo approaches are inadequate because they learn
policies off-line; the non-episodic nature of the PR problem
requires an on-line solution that can learn a policy as it inter-
acts with the user. In contrast to the other two approaches,
TD learning works well for non-episodic tasks with unknown
rewards. Of the TD(λ) solutions, we choose to examine the
1-step backup methods as an initial approach.

Many 1-step backup TD control methods exist, including
Sarsa, Q-learning, and actor-critic methods. Q-learning is an
off-policy method that learns the optimal policy regardless of
the policy used. In contrast to Q-learning, Sarsa is an on-
policy method that takes the current policy into account in its
action-value estimates. It operates according to the following
update rule:

Q(st, at) ← (1− α)Q(st, at)

+α [rt+1 + ρQ(st+1, at+1)] (3)



reinforcement comparison, α = 0.1
pursuit, α = 0.1

softmax, µ = 0.01, α = 1/k
softmax, µ = 0.05, α = 0.1
ε-greedy, ε = 0.1, α = 0.1

%
O

pt
im

al
ac

tio
n

%
O

pt
im

al
ac

tio
n

Plays
10008006004002000

100%

90%

80%

70%

60%

50%

40%

30%

20%

Figure 1: Stationary Bandit User Model

where st ∈ P δ is the current state, st+1 is the next state,
at ∈ APR is the current agent action, at+1 is the next agent
action according to the policy, α is a constant weight, rt+1 is
the reward received in the next time step, and ρ is the discount
factor.

Both learning methods work well with a wide range of
policies, including ε-greedy methods and Gibbs softmax al-
gorithms. The advantage of Sarsa is that its action-value esti-
mates accurately re¤ect the action values of the policy used,
whereas Q-learning always learns estimates for the optimal
policy. If the policy converges to the greedy policy, however,
then Sarsa will eventually learn the optimal policy.

6 Simulations
6.1 Single State Bandit Model
In order to demonstrate the agent’s ability to learn user prefer-
ences using reinforcement learning, we simulated the single
state bandit solutions described in section 4. To illustrate a
wide range of different approaches, we have selected an ε-
greedy method, two Gibbs softmax methods with initial tem-
perature T0 = 10 and cooling rates µ = {0.05, 0.01}, a pur-
suit method, and a reinforcement comparison approach. All
of these implemented exponential averaging with α = 0.1
except for the µ = 0.01 softmax which uses α = 1/k, giving
equal weight to all samples.

Figure 1 shows the observed results for stationary user
preferences. The plot shows the average of 5000 tasks, each
consisting of 1000 plays, or time steps. At the start of each
task, the reward probabilities Q∗(ai) are initialized with ran-
dom values between −1 and 1 for each of the £ve agent ac-
tions ai ∈ APR. The plot shows the percentage of optimal
actions for each play, where the optimal action is de£ned as
the action providing the greatest expected reward.

The £gure shows how the choice of learning method affects
the speed at which the optimal action is learned as well as the
long term average reward. The ε-greedy and pursuit meth-
ods improve very rapidly initially, but soon reach asymptotic

reinforcement comparison, α = 0.1
pursuit, α = 0.1

softmax, µ = 0.01, α = 1/k
softmax, µ = 0.05, α = 0.1
ε-greedy, ε = 0.1, α = 0.1

%
O

pt
im

al
ac

tio
n

Plays
10008006004002000

100%

80%

60%

40%

20%

0%

Figure 2: Nonstationary User Model, θ = 100, η = 0.4

levels at approximately 80%. In contrast, the Gibbs softmax
method with µ = 0.01 makes poor selections in the £rst few
hundred plays while it explores, but eventually selects the op-
timal action 95% of the time. The other algorithms achieve
optimality at various speeds in between these two extremes.
in summary, the data shows the trade-off involved between
exploration and exploitation; the more time the agent spends
exploring, the better the policy it can learn in the long run.

Figure 2 shows the observed behavior for nonstationary
preferences that change occasionally. In this simulation, the
agent begins with knowledge of the user’s preferences. On
the £rst play, and every 100 plays afterwards, the reward
probabilities Q∗(ai) for each action is randomly increased
or decreased by a constant magnitude of η = 0.4 (see section
4). In the steady state, the ε-greedy method performs the best,
selecting the optimal action up to 66% of the time. The non-
stationary data shows that when the user’s preferences change
the agent must use recent observations in its estimates and
does not have much time to explore. In this situation, the ε-
greedy approach quickly £nds a good action and exploits it,
but the reinforcement comparison method spends too much
time exploring while the α = 1/k softmax algorithm fails to
discount old observations.

One would expect that as the rate of user preferences
change increases it becomes more dif£cult for the agent to
learn their preferences. Figure 3 con£rms this expectation
by showing the effect of θ (frequency of change—see sec-
tion 4) on performance. For chosen values of θ between 1
and 1000, we simulated each agent model for 3000 tasks and
1000 plays using η = 0.1. For those values of θ, the plot
shows the percentage of optimal actions for the play just be-
fore the last change in user preferences. At the left when
preferences change frequently, the ε-greedy method performs
the best. As we move to the right we approach the station-
ary case; as before, softmax with µ = 0.01 performs the best
while ε-greedy performs more poorly.



reinforcement comparison, α = 0.1
pursuit, α = 0.1

softmax, µ = 0.01, α = 1/k
softmax, µ = 0.05, α = 0.1
ε-greedy, ε = 0.1, α = 0.1

%
O

pt
im

al
ac

tio
n

%
O

pt
im

al
ac

tio
n

%
O

pt
im

al
ac

tio
n

θ

1000100101

100%

80%

60%

40%

20%

0%

Figure 3: Nonstationary User Model, η = 0.2

6.2 Multistate MDP Model
We have seen that in the single state case, the agent can learn
user preferences for stationary and nonstationary user prefer-
ence models. The reinforcement learning methods described
in 5 allow us to learn these preferences in multistate mod-
els as well. Figure 4 contrasts the performance of a Sarsa
TD learning approach with a single state bandit method in
a simulation over 10,000 tasks. In this simulation, the set
of service pro£les P δ consists of all integer bandwidth/cost
pairs (b, h) within a 3 unit radius of the initial service pro-
£le s0 = (5, 5). At the start of each task, the user utility
function U(q, h) = wqq + whh is initialized randomly with
0 < wq < 1 and −1 < wh < 0. The expected reward is
given by the function r(si) = 1 − 2

1+e−U(si)
. Though the

ε-greedy bandit method learns the rewards for each action, it
does not accurately compute the long term value as well as the
Sarsa method. The advantage of TD learning becomes even
more apparent as the state space increases; when the radius
is 5, the Sarsa approach obtains 2.5 times the reward of the
bandit method, illustrating the effectiveness of a TD learning
approach over a bandit method in a multistate PR model.

7 Conclusions and Future Work
In this paper we described a user-modeling problem for the
domain of wireless services. An agent, called a Personal
Router, was proposed as a solution to this problem. We
showed how the nature of the problem bounds the informa-
tion set of the agent. We then presented a formal model of
the service selection problem and showed how it can be cap-
tured in an MDP representation. Heuristic solutions from re-
inforcement learning were then empirically evaluated for two
simpler MDP models of the PR problem.

There are a number of future directions. Our £rst goal
is to continue to empirically evaluate different learning al-
gorithms for increasingly more complex MDPs. The perfor-
mance of the resulting agents will then be evaluated for eco-
logical validity in controlled user experiments, the outcomes

radius 5 bandit, ε = 0.1, α = 1/k
radius 5 Sarsa, ε = 0.1, α = 0.2

radius 3 bandit, ε = 0.1, α = 1/k
radius 3 Sarsa, ε = 0.1, α = 0.2

Plays

A
ve

ra
ge

re
w

ar
d

500450400350300250200150100500

0.7

0.6

0.5

0.4

0.3

0.2

0.1

0

Figure 4: Multistate Stationary User Model

of which will be used for further (re)design-simulation-user
experiment development, followed by £eld testing. Finally,
our longer term goal after achieving a satisfactory level of
performance of the agent is to extend the single agent decision
mechanism to multi-agent systems (MAS) . In particular, we
envisage not only negotiation decision mechanisms within a
MAS but also that MAS mechanisms (such as distributed rep-
utation, gossiping, and/or collaborative £ltering mechanisms)
can be useful information sources for parameters of the agent
preference elicitation model.

References
[Boutilier, 2002] Craig Boutilier A POMDP Formulation of

Preference Elicitation Problems In Proceedings of Amer-
ican Association of Arti£cial Intelligence, pages 239–246,
Edmonton, Alberta, Canada. 2002.

[Chajewska et.al., 2000] U. Chajewska and D. Koller and R.
Parr Making rational decisions during adaptive utility elic-
itation. In Proceedings of the Seventeenth National Con-
ference on Arti£cial Intelligence, pages 363–369, Austin,
TX, 2000.

[Faratin et.al., 2002] P. Faratin and J. Wroclawski and G.
Lee and S. Parsons The Personal Router: An Agent for
Wireless Access. In Proceedings of American Association
of Arti£cial Intelligence Fall Symposium, pages 13–21, N.
Falmouth, MA, 2002.

[Kaelbling et.al, 1996] L.P. Kaelbling and M.L. Littman and
A.W. Moore Reinforcement Learning: A Survey. Journal
of Arti£cial Intelligence Research, 4:237–285, May 1996.

[Keeney and Raiffa, 1976] R. L. Keeney and H. Raiffa Deci-
sions with Multiple Objectives. John Wiley and Sons, NY,
1976.

[Sutton and Barto, 2002] R.S. Sutton and A.G. Barto Rein-
forcement Learning. MIT Press, Cambridge, MA, 2002.


