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Abstract

This paper proposes a new class of traffic profiles that is
better suited for metering bursty Internet traffic streams
than the traditional token bucket profile. A good traffic
profile should satisfy two criteria: first, it should consider
packets from a conforming traffic stream as in-profile with
high probability to ensure a strong QoS guarantee; second,
it should limit the network resources consumed by a non-
conforming traffic stream to no more than that consumed
by a conforming stream. We model a bursty Internet traffic
stream as an ON/OFF stream, where both the ON-period
and the OFF-period have a heavy-tailed distribution. Our
study shows that the heavy-tailed distribution leads to an
excessive randomness in the long-term session rate distribu-
tion. Therefore, it is inherently difficult for any profile that
limits the long-term average session rate to give a strong
QoS guarantee for the conforming traffic streams. Our sim-
ulation demonstrates that a token bucket profile that cou-
ples the average rate control and the burst size control has
a weak QoS guarantee. Based on this result, we propose
a new class of traffic profiles that decouples the long term
average rate control from the burst size control. Compared
to a token bucket profile, this profile improves the level of
QoS for a conforming traffic stream, yet limits the “effective
bandwidth” consumed by a non-conforming traffic stream.

1. Introduction

This paper discusses the design of traffic profiles for bursty
Internet traffic. We propose a new class of traffic profiles
that performs better than the traditional token bucket pro-
file. In the Diffserv [6] architecture, a traffic profile defines
the rules for a meter to decide whether a packet from a traf-
fic stream is in-profile or out-of-profile. The packet may be
subject to different conditioning actions. When there is a
Service Level Agreement (SLA) present, the essential goal
of a profile is not to smooth bursty traffic. Instead, it is to
check whether a traffic stream conforms to the SLA. A good
traffic profile needs to satisfy two criteria. First, from the
perspective of providing a QoS guarantee, it is desirable to
have a high probability guarantee that packets from a con-
forming stream will be identified as in-profile. A conform-
ing stream is a traffic stream whose statistics are allowed
by a traffic profile. Second, from the perspective of policing
against misbehavior, a traffic profile should limit the “ef-
fective bandwidth” [14] consumed by the non-conforming
stream to be no more than that consumed by a conforming
stream. Thus the misbehavior of the non-conforming stream
will not degrade the level of service for a conforming stream.

An example of a non-conforming stream is one that has a
much higher expected transmission rate than that allowed
by a traffic profile.

It is desirable to have a range of traffic profiles for differ-
ent classes of traffic, and for differentiation within a class.
For example, traffic streams generated by constant bit rate
video applications have quite different statistics than those
generated by web browsing sessions, thus require different
profiles to meet their QoS requirements. It is worth noting
that the type of traffic we consider in this paper is most of-
ten generated by document transfers, such as web browsing.
Traditionally, the QoS requirement for such traffic (a.k.a.
elastic traffic) is less obvious than that for the real-time
traffic. In this paper, the QoS requirement we consider is
transparency [20]. If a burst is sent at the specified peak
rate, we say the transfer is transparent. If a burst is not sent
at the specified peak rate, a user will notice delay, spend
time waiting, and become dissatisfied. Thus, we consider
transparency as a valid QoS requirement for such interactive
applications. We admit that the ultimate QoS measurement
is user satisfaction, which can not be completely determined
by the measurement of network performance. For an interac-
tive traffic stream, a user may value some bursts more than
others. Since we do not have a precise method to quantify
user satisfaction, as an approximation, we assume that the
higher the percentage of bursts that are sent transparently
, and the more the bytes that are sent transparently, the
higher the user’s satisfaction is. There have been related
studies on traffic profiling algorithms, such as different win-
dow policing mechanisms [18], multiple token banks [5], and
the fractal leaky bucket [13] algorithm.

In this paper, we model a bursty Internet traffic stream
as an ON/OFF stream, where both the ON-periodand the
OFF-periodhave heavy-tailed distributions. This model is a
simplified derivation from recent results of traffic measure-
ment and modeling [17, 10, 15]. According to Barford and
Crovella’s work [3], users’ Web browsing behaviors follow
the ON/OFF pattern, where ON-periodhas a heavy-tailed
distribution attributed to the heavy-tailed file size distribu-
tion.

Our simulation and analysis show that there is no “natu-
ral” average session rate for a single traffic stream. Thus, it
is unlikely for any profile that limits the long-term average
session rate to give a strong QoS guarantee. Our simulation
also demonstrates that a token bucket profile that couples
the average rate control and the burst size control has a
weak QoS guarantee. Based on this result, we propose a
new class of traffic profiles that decouples the long term av-



erage rate control from the burst size control. Compared to
a token bucket profile, this profile improves the level of QoS
for a conforming stream, yet effectively limits the “effective
bandwidth” consumed by a non-conforming traffic stream.

2. Traffic Model, Simulation Method and No-
tations
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Figure 1: The ON/OFF Traffic Model.

In this section, we describe the traffic model, the sim-
ulation method and some notation. In our simulation, a
bursty traffic stream from a single source is modeled as
an ON/OFF traffic stream. The ON-periodmodels a sin-
gle flow, such as the transfer of a single web page, and the
OFF-periodmodels users’ thinking time. ON-periods and
OFF-periods are strictly alternating. The stream models
traffic generated during a session, i.e., a busy period of user
activities, such as web browsing for an hour. For bursty In-
ternet traffic, both ON-periods and OFF-periods are mod-
eled by Pareto distributions. In an ON-period, packet ar-
rivals are spaced out by P/L, where P is the packet size
and L is the peak rate. Figure 1 depicts the traffic model.
In our simulation, the traffic stream is passed through a
meter that decides whether a packet is in-profile or out-of-
profile according to a traffic profile. As we are interested
in the transparency QoS requirement, out-of-profile traffic is
shaped, instead of dropped or marked. Thus, the transfer
time of a burst can be used to measure performance.

Traditional traffic models assume that the burst size is ex-
ponentially distributed. To better understand the difference
between these two models, we simulate both the Exponen-
tial distribution and the Pareto distribution in some experi-
ments, and compare the results. If a Pareto distribution has
mean p and location parameter m, the corresponding expo-

nential distribution is defined as P{X < z} = l—eim , T >
m.

In this paper, a token bucket profile with a token rate r
bytes/s and a token depth b bytes is denoted by the pair
(r,b). We always assume our simulation starts at time 0.
And A(t) denotes the cumulative arrivals of a traffic stream
up to time t. Simulation results shown are obtained using
the parameters in Table 1 unless otherwise specified. These
parameters for the Pareto distribution are chosen based on
recent research results on traffic measurement and model-
ing [3, 15].

3. Average Session Rate of a Bursty Source

For a heavy-tailed ON-perioddistribution, there is no “nat-
ural” burst size [17], to which the token bucket size can be
set. In this section, we look at the distribution of the aver-
age session rate of a traffic stream at different time scales via
simulation. A session is simulated by a single run with some

length 7. Each distribution curve is sampled from 10° runs.
Figure 2 and Figure 3 show the cumulative distribution func-
tion of the normalized session rate of a Pareto distribution
and an Exponential distribution over multiple time scales.
A normalized session rate is computed by dividing the av-
erage rate in a simulated session by the expected rate of
the ON/OFF stream. The tail is shortened quickly for the
Exponential stream, which shows that the throughput of an
exponential stream averaging over an hour duration has a
small variance and there exists a “natural” session rate to
which the token rate can be set. In contrast, the tail shape
for the Pareto distribution does not change much for simula-
tions ranging from ten seconds to two hours, which suggests
that even averaging over a duration as long as two hours,
the session rate of a heavy-tailed ON/OFF stream has a
large variance. Hence it has non-negligible probabilities of
reaching quite large or quite small values. The observed
maximum throughput is only limited by the peak rate.

Intuitively, the simulation results can be explained by the
Central Limit Theorem (CLT) and the corresponding limit
theorem for random variables with infinite variance [12, 9].
Let X; be the size of burst i, ton be the mean burst transfer
time, and torpr be the mean off time. The mean arrival time
for one ON/OFF cycle will be tperiod = ton + torr. In a
session of length T, the average number of bursts arrived can
be approximated as N = T'/tperioq. Therefore, the average
session rate rr is roughly:

- NX;
rp = Zust N 1)

Let pr, denote the mean of rr. For large N, when X;
is an exponential distribution, (rr — prp )N —1/2 converges
to a Normal distribution, whose tail probability decreases
exponentially fast. When X; is a Pareto distribution, (rr —
trp )N ~1+1/e converges to a levy-stable distribution, which
has a power-law tail with the same shape parameter a as
that of X;. Our analysis roughly explained the results in
Figure 2 and Figure 3. Notice that rr is actually limited by
the peak rate L and therefore it cannot be simply expressed
as the sum of N random variables as in Equation 1. The
analysis is not accurate. But, since rr has finite range, we
do not require many samples in our simulation to derive
the distribution. Otherwise, as pointed out by Crovella and
Lipsky [9], it requires 1022 samples to get two digits accuracy
for estimating the population mean of a Pareto variable with
a shape parameter a = 1.1 and infinite range.

This slow-convergence property poses a problem for traf-
fic profiling. A traffic profile has two functions [4]. First, it
is a SLA between a user and a network operator. It helps
both the user and the network to decide whether a packet is
in-profile or out-profile. Second, it provides the network op-
erator with relevant information for resource management.
However, a bursty traffic stream generated by a particular
application is a random process. We hope we can predicate
its behavior from previous observations. For an Exponential
ON-OFF traffic stream, as we have seen, it is highly possible
to predicate the stream’s long term behavior. However, for
a heavy-tailed ON-OFF stream, even we assume the appli-
cation always generates traffic conforming to a known distri-
bution, the behavior of an individual session is still beyond
predictability. For any profile that limits the average session
rate to r, in a duration ¢, the number of arrived tokens A(t)
is limited by rt. Both our simulation and analysis conclude



Table 1: Simulation Parameters

Period | Shape («) | Location (3) Distribution Mean
ON 1.05 1024 Bytes | P{X <z} =1—({Z)"%" 2 >1024 | 14026 Bytes
OFF 1.4 1 Second P X<z}=1-(1)""z>1 3.4939 Seconds
Packet Length 1024 Bytes
Peak Rate 1.5Mbps
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Figure 2: The convergence of a Pareto ON/OFF Traf- Figure 3: The convergence of an Exponential
fic Stream. The different curves are for session lengths ON/OFF Traffic Stream. The different curves are for
of 10s, 100s, 1000s, 1 hour and 2 hours. session lengths of 10s, 100s, 1000s, 1 hour and 2 hours.

that for any time scale ¢, there is a non-negligible probability
that an application may generate near-peak traffic for the
entire duration ¢, which indicates that unless A(t) is close
to Lt (recall that L is the peak rate), with non-negligible
probability, an application will generate out-of-profile traf-
fic, and the QoS may not be guaranteed. For example, even
if a user’s browsing behavior can be perfectly modeled by a
heavy tailed ON/OFF process, within a browsing session, he
is likely to download a large file with non-trivial probability.
Thus if he has negotiated a profile limiting his average ses-
sion rate to r, with r equaling to the expected session rate,
according to Figure 2, for a one-hour session, with prob-
ability one out of ten, his traffic demand will exceed the
limit allowed by the profile, i.e., rt, and thus be marked as
out-of-profile. As the probability of getting a large value
decreases polynomially, increasing the token rate r from the
expected rate only reduces the probability of marking his
traffic out-of-profile polynomially.

4. Performance of Token Bucket Profiles

In this section, we look at the performance of a token
bucket profile. A token bucket profile (r,b) limits the maxi-
mum burst size of a traffic stream to b, as well as the average
rate of a session with length ¢ to r + b/t, thus enhances the
predicability of the output traffic stream. It has no long
term memory. When the bucket is full, extra tokens are
discarded, and the good behavior of a stream is forgotten.
The decision made on a packet depends only on the short
term history of a traffic stream, i.e., whether the previous
burst has consumed all the tokens, but not on the long term
history.

4.1 Performance of a Token Bucket Profile
We simulate the case where an ON/OFF traffic stream is

policed against a token bucket profile. When the transfer of
a burst is finished, an OFFtime follows before a new burst
arrives. The maximum bucket size is set at ten times the
mean burst size. At the beginning of each simulation, the
bucket is full. For each run, we record the time it takes for
each burst to be transmitted. The time is normalized using
the peak-rate transfer time of each burst. We then draw
a distribution of the normalized transfer time, both in the
number of bursts and in the number of bytes. Each distribu-
tion is sampled from 10,000 runs. Each simulation runs for
the duration which it takes to transmit the amount of traffic
that would be sent in a one-hour session with no traffic pro-
file present. Figure 4 and Figure 5 show the performance of
a token bucket profile for shaping a Pareto ON/OFF source
and an Exponential ON/OFF source. The token rate varies
from the expected session rate to twice the expected session
rate.

As seen from the figures, when the token rate is set to the
expected session rate, for a Pareto ON/OFF stream, more
than 98% of bursts can be sent without distortion. However,
those bursts only consist of 45% of the total bytes sent. For
an Exponential ON/OFF stream, more than 90% of files
and 80% of bytes can be sent without distortion. When the
token rate is increased to twice the average session rate, the
performance for the Exponential stream is improved much
more significantly than that for the Pareto stream. This
result can be predicted from the session rate distribution, as
a quite high session rate may happen for a Pareto ON/OFF
stream with non-negligible probability. The session rate may
be very close to the peak rate. Hence increasing the token
rate does not increase the performance significantly for the
Pareto ON/OFF stream.

4.2 How to Improve QoS Guarantees
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Figure 4: Fraction counted by the number of bursts
for an ON/OFF traffic stream. When the token rate
doubles, most bursts of the Exponential stream are
sent at the peak rate.
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Figure 6: Fraction counted by the number of bursts.
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Figure 8: Fraction counted by the number of bursts.

A token bucket profile limits both the burst size and the
average session rate. We can either increase the limit on
the average session rate or increase the limit on the maxi-
mum burst size to improve QoS guarantees. To formulate

Performance of a Token Bucket Profile
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Figure 5: Fraction counted by bytes. When the token
rate doubles, most bytes of the Exponential stream
are sent at the peak rate. For the heavy-tailed traffic
stream, even more than 98% of the bursts are sent at
the peak rate, they constitute merely about 45% of
the bytes.
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Figure 7: Fraction counted by bytes.
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Figure 9: Fraction counted by bytes.

ideas on how to improve the performance of a token bucket
profile for a heavy-tailed ON/OFF stream, we compare the
effectiveness of increasing the bucket size and increasing the
token rate from three aspects. First, we compare how effec-



tive they are in improving the QoS guarantees for a single
conforming traffic stream. By “conforming”, we mean that
the traffic stream is generated from the pre-negotiated dis-
tribution. Second, we compare how effective they are in
limiting the QoS guarantees for a single aggressive stream.
By “aggressive”, we mean that the traffic stream consumes
more bandwidth than pre-negotiated. Thirdly, we compare
how effective they are in controlling aggregated aggressive
streams. An effective profile should limit the peak band-
width of the multiplexed aggressive streams to be no more
than the peak bandwidth of the multiplexed conforming
streams without traffic profiles. Thus, in the worse case,
when the majority of the users are misbehaving, a network
provider can still provide QoS for the in-profile traffic, given
that he has provisioned his network according to the peak
bandwidth of the multiplexed conforming streams.

To conduct the first comparison, we run simulations with
a token bucket profile that allows unbounded bucket size.
And the initial number of tokens in the bucket is set at ten
times the average burst size. The result from this profile
is compared against the normal token bucket profile (r,b)
and (2r,b), respectively. Figure 6 and Figure 7 show the
performance comparison when the stream’s expected rate
is 7. The token bucket profile (2r,b) shortens the token-
rate burst transfer time by half, but it does not significantly
increase the number of bursts or bytes that are sent at the
peak rate. In contrast, the profile (r, unlimited) reduces the
non-peak rate transfered files from 1.7% to less than 0.2%
and the non-peak rate transfered bytes from 55% to 33%.

For the second comparison, we set the minimum burst
size of an aggressive stream at ten times that of a conform-
ing stream. Such an aggressive stream is policed by profiles
(r,b), (2r,b) and (r, unlimited), where r is the expected rate
of a conforming stream and b is ten times the mean burst
size of a conforming stream. The results are shown in Fig-
ure 8 and Figure 9. As can be seen, the profile (2r,b) is not
as effective as the profile (r,unlimited). The profile (2r,b)
allows more bursts and bytes to be sent without distortion
or with less distortion and can not limit the long term ses-
sion rate to be r. Thus, it is not as effective as the profile
(r, unlimited) at discriminating conforming and aggressive
streams.

For the third comparison, we compare the normalized
peak data rate of aggregated aggressive traffic streams when
shaped by the three profiles (r,b), (2r,b) and (r, unlimited).
A normalized peak data rate is computed as P/nr, where P
is the measured average peak rate of aggregated streams, r is
the expected data rate of a single conforming traffic stream,
and n is the number of streams. The aggregated peak rate
P, is a random variable, with an upper bound n x L, where
L is the peak data rate of a single traffic stream. In our
simulation, all streams are homogeneous. For each n, we
ran 10000/n simulations. Each of them simulates an 8-hour
trace. We record the peak arrival rate seen in 5ms intervals
in the trace of each run. The length of the interval is chosen
because the spacing between packets from a single source is
about 5ms in our simulation. We then compute the average
peak rate P and the standard deviation of P over 10000/n
runs. As we do not know the distribution of P, and each
simulation is run for a long time, we use P as a representa-
tive value such that with a high probability, the peak rate
of the aggregated traffic streams P, is less than P.

Figure 10 shows the simulation results, together with the

normalized data rate for conforming traffic streams when
there is no profile and no shaping. As shown in Figure 10,
the normalized data rate degenerates as the number of mul-
tiplexed sources increases, indicating a statistical multiplex-
ing gain for bursty traffic. The normalized peak data rates
of the aggregated aggressive streams shaped by the profile
(r, unlimited) and (r,b) are quite close to that of the aggre-
gated conforming streams without shaping. For the profile
(2r,b), the aggregated normalized peak data rate exceeds
that of conforming streams, which means that the profile is
not effective in limiting the effective bandwidth of aggressive
streams. A network will become congested when the peak
of the aggregated traffic exceeds the bandwidth provisioned
according to the conforming sources without profiles, and
thus can not guarantee the QoS for the in-profile traffic.
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Figure 10: The normalized data rate of aggregated
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aggressive traffic streams.

5. A New Traffic Profile: the 2Bucket Profile
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tokens from network
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Figure 13: The 2Bucket Profile

From the above experiments, we conclude that to effec-
tively improve QoS without compromising discrimination
against misbehavior, it is better to increase the token bucket

size than to increase the token rate. However, the (r, unlimited)

profile offers no control over burst size. A malicious user may
keep silent for almost the entire course of a session and then
burst out all his accumulated tokens. This observation leads
to our design of a new class of traffic profile: the 2Bucket
profile. A visualization of the profile is shown in Figure 13.
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One bucket B that has a maximum capacity b is used to
control the burst size. The other bucket B;, which has an
unlimited capacity, is used to record the long term history.
Tokens arriving from the network are stored into B; first. If
B; is overflowed, tokens are dumped into B;. When a packet
arrives, if Bs has enough tokens, the packet is transmitted
immediately. If Bs is empty and B; has extra tokens, a
refill process may be triggered. This process is triggered
according to a refill policy. The choice of refill policies is
a key design parameter of the 2Bucket profile. In a refill,
tokens are taken from B; to fill B,. After B, is filled with
enough tokens, the packet may be sent. If both Bs and B
are empty, or Bs is empty and a new refill process is not
allowed, the packet has to wait for tokens to come from the
network. A refill policy decides when and how tokens are
refilled from B; into Bs. We use the terms Bs; and B; to
refer to both the available tokens in the two buckets and
the buckets themselves, as the meanings will be clear from
context. Recall that A(t) is the cumulative arrivals from a
stream in a time period t. This two-bucket profile ensures
that as long as A(t) <rt+0b, Bi+ Bs > 0.

The behavior of the 2Bucket profile is quite different when
different refill policies are deployed. A refill policy deter-
mines the burstiness allowed by the profile. We will de-
scribe two possible policies and analyze their performance.
It is also possible to design other refill policies, depending
on the type of controls we need. The first policy is called
“forced_off’. For this policy, a refill process fills Bs with
min(b, B;) tokens at the peak rate. Two consecutive refills
must be separated by at least the time interval forced_off.
This policy will break a long burst into several small bursts,
as long as the long term behavior of a traffic stream is good,
i.e., By 4+ Bs is not empty. If the long burst is a document
transfer, this break-down will increase the transfer time. De-
pending on the values of b and forced_off, the transfer time
can still be much less than the token-rate transfer time. If
the burst is actually a video stream (for example, a user asks
for a cheap bursty-traffic profile but uses it to watch on-line
video), this break-down will give intolerable performance.
Thus, it can discourage the misuse of a profile.

We call the second policy one_refill. For this policy, refill
is more strict. Only one refill of min(b, B;) tokens is allowed
in any ONperiod. It limits the maximum burst size to be at
most 2 X b. If a stream’s long term behavior is good, each
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Figure 12: Fraction counted by bytes.

ON-periodis guaranteed a refill. In contrast, for a token-
bucket profile, if the previous burst exhausts all available
tokens in the bucket, the next burst has to wait for more
tokens.

Performance of this new profile with two policies is shown
in Figure 11 and Figure 12, along with the corresponding
token-bucket profiles (r,b) and (r,unlimited). In our sim-
ulation, for the forced_off policy, the parameter forced_off
is set to the location parameter of OFF-perioddistribution,
min_off. For the one_refill policy, if we have not seen a
packet from a source for a time period min_off, we con-
clude one burst has ended and the stream is eligible for a
new refill. The profile (r, unlimited) is actually a special
case of the 2Bucket profile. When the parameter forced_off
is set to zero, the 2Bucket profile behaves exactly the same
as (r,unlimited).

Notice that there is a sharp knee in the curve for forced_off,
and the performance of forced_off and (r,unlimited) are al-
most the same after the knee. When examining the raw
transfer time recorded in the trace file, we found that the
bursts after the knee were sent when B; ran out of tokens.
Therefore, the rest of the bursts can only be sent at the
token rate, despite the refill policies. When B; runs out of
tokens, the long term behavior of a stream reaches the limi-
tation imposed by the token rate. Clearly neither forced_off
nor (r,unlimited) can improve the performance in this case.
The steep region of the curve consists of bursts that are
transmitted when B; has extra tokens. In the (r, unlimited)
case, bursts are sent at the peak rate immediately. In the
case of forced_off, a forced_off token-rate period is forced be-
tween two bursts. The transfer time is slightly lengthened
under this policy. Compared to the token bucket profile,
both forced_off and one_refill improve performance.

6. Other Possible Improvements

6.1 Fundamental Issue

The fundamental issue of designing a traffic profile for
bursty traffic is to find a good descriptor with a few param-
eters to capture the statistical behaviors of a traffic stream.
Our proposed 2Bucket profile keeps track of the long term
behavior of a traffic stream and relaxes the constraint on the
maximum burst size if a stream has a good history. As the
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streams when there is no profile and no shaping.
The performance of each profile is similar.

burst size distribution for a heavy-tailed ON — OF F' source
has an infinite variance, this relaxation effectively improve
the performance. However, this profile still limits a session’s
long term average rate, which is highly variable in the case of
bursty traffic. This constraint can not be deterministically
relaxed. Otherwise, a profile cannot limit misbehaviors of
aggressive streams, as shown in Figure 10. Here we discuss
two possible future improvements.

6.2 A Probabilistic Profile

The profiles we have discussed so far use a deterministic
algorithm to decide whether a packet is in-profile or out-
of-profile. Thus, the same measure will be applied to all
sessions presumedly drawn from the same distribution. An-
other possible approach is to probabilistically decide whether
a packet is in-profile or out-of-profile based on a stream’s
long term history. When a user negotiates a profile with
a network, the user describes the statistical characteristics
of his traffic stream to the network. For example, a Pareto
ON-OFF stream may let the network know the parameters
in Table 1. Suppose at time point ¢ after the profile is set up,
a stream has sent a bytes. When a new packet with length
[ arrives, based on the parameters a user declares, the net-
work can compute the probability p = P{A(¢) > a + {}. If
a+1>rt, both Bs and B; will be empty. Then with prob-
ability monotonic in p, the network sends the packet at the
peak rate. Otherwise, the packet has to wait for tokens.

This probabilistic profile imposes no hard limit on how
much a stream can send. Instead, it probabilistically re-
laxes the limitation. A user that sends more will have a
lower probability to send future packets at peak rate after it
exceeds the average rate limit. In the current profiles, this
probability is zero. Thus, this probabilistic profile may give
better QoS guarantees than deterministic profiles.

However, if the out-of-profile traffic will be offered Best-
Efforts service instead of being shaped, the need for this
relaxation will be alleviated. Thus, how well the proposed
probabilistic profile performs and whether it is worth the
efforts need further study.

6.3 Renegotiate New Profiles

In our study, we assume a profile is set up for a session,
which usually lasts for an hourly time scale [grammar]. The
profile remains unchanged during the session. However, if
we assume a stream can dynamically renegotiate new pro-
files, the performance can be further improved. For a heavy-
tailed ON-OFF stream, the size of a burst increases with the
bytes seen from the burst. Thus, if the transfer time of a
burst exceeds some threshold, it is likely the burst will be
very large. Based on this information, a user can explicitly
request a new contract for transmitting the long document.
This profile may cost less and the network may give low pri-
ority to its traffic so as to automatically achieve shortest job
first scheduling and improve the overall response time. This
profile may also cost more and the network will allow the
entire burst to be sent at the peak rate.

7. Related Work

Rathgeb [18] compared different policing mechanisms pro-
posed for controlling individual cell streams in the ATM
networks using analytical results. The mechanisms he com-
pared include the Leaky Bucket Mechanism(LB), the Jump-
ing Window Mechanism(JW), the Triggered Jumping Win-
dow Mechanism (TJW), the Exponentially Weighted Mov-
ing Average Mechanism (EWMA), and the Moving Window
Mechanism(MW). His comparison also used an ON-OFF
model, where the ON-period had a geometry distribution
and the OFF-period had a negative exponential distribution.
The comparison that took into account aspects including the
violation probability of a conforming statistical source and
the worse-case admitted traffic showed the LB and EWMA
were most promising mechanism. The author concluded to
limit the violation probability for a well-behaving stochas-
tic source, a large bucket size or a large window size is re-
quired. In our study, we chose a different source model, and
argued that for any algorithm that limits the average rate
of a source, it is impossible to limit the violation probability
to some negligible value.

Courcoubetis and Kelly et al [8] proposed a charging scheme
based on the effective bandwidth of a traffic stream. The
charging schemes consider both the a prior knowledge of a
traffic class and the posterior usage of a particular traffic
stream. A total charge consists of a charge according to the
usage time and a charge according to the total volume sent.
A charging scheme is used to regulate misbehavior, as the
more a user sends, the more he will be charged.

Berger [4] described an algorithm that defines a gener-
alized form of traffic profiles. The token-bucket profile is
its specialized form. In the paper, Berger showed the con-
ditions on the algorithm to produce certain network prop-
erties, such as penalizing the throughput of bursty traffic.
The algorithm has one single parameter. It is interesting
to see whether our proposed profile, which has two state
parameters, can be generalized using a similar approach.

Fonseca et al [13] proposed a novel traffic profiling al-
gorithm called fractal leaky bucket' (FLB). The design of
FLB is based on the observation that the cumulative arrival
process A(t) of a self-similarity process has an extra term
kt*, 0 < a < 1. Though lim;_inf A'(t)/t = p, where p is

IThere is a subtle different between a leaky bucket profile
and a token bucket profile. For the purpose of our analysis,
we can ignore the difference.



the expected rate of the arrival process, at any finite time,
ut < A(t). Thus, for a leaky bucket profile, if the token rate
is set to u, the arrived tokens will be less than the arrived
bytes. This will cause packets (or cells) from a conforming
process to be marked unconforming. The proposed FLB al-
gorithm compares the total arrived packets within a time
interval 7 with those computed by the envelop process A’(t)
of the cumulative arrival process A(t). If the arrived packets
exceed those allowed by A’(t) extra packets are considered
out-of-profile, and 7 is increased. On the other hand, if the
arrived packets are less than those allowed by A’(t), 7 is
decreased. However, there are at least three problems asso-
ciated with the FLB algorithm. First, it is hard to compute
the parameters for the envelop process. Second, decisions
are made at discrete time intervals 7, which increases the
delay jitter. Third, it is quite likely the envelop process al-
lows a source to send at the peak rate for a fairly long time.
As shown in Section 3, an envelop process of the ON-OFF
Pareto process will be one that only limits the peak rate of
the source.

Clark et al [7] designed the time-sliding window (TSW)
algorithm to keep the average rate of a TCP flow within a
target rate. The algorithm has two parameters: the slid-
ing window length window and the target rate R;. The
algorithm also keeps a state variable last that records the
arrival time of the last packet and a state variable est that
estimates the average rate of a TCP flow. Upon the ar-
rival of a packet with length L at time now, the algorithm
updates est as (L + est x window)/(now — last + window).
Due to the saw-tooth behavior of a TCP flow, the send-
ing rate of a conforming TCP may oscillate between 0.66 R
and 1.33R;. If window is large and est > R:, the algo-
rithm can decide a packet out-of-profile with probability
(est — Ry)/Ry. If window is on the order of the round trip
time, and est > 1.33R;, the algorithm can decide a packet
out-of-profile. Lin [16] et al proposed the enhanced TSW
(ETSW) algorithm, which keeps track of both a short term
estimation and a long term estimation of a TCP’s send-
ing rate. ETSW dynamically maintains a state variable
watermark between [1.0, 1.33]. The short term estimation
of the sending rate is compared against watermark * R to
decide whether a packet is out-of-profile or in-profile. Ely-
see [11] modified the TSW algorithm into the Average Rate
Control Usage Profile (ARCUP) algorithm as a profile for
bursty Internet traffic. Unlike TSW, in ARCUP, the rate
estimation is done on a per file basis, and the policing ac-
tion is to cut down the peak transfer rate of a file, instead
of marking a packet as in or out. Elysee also compared the
performance of the ARCUP algorithm and the leaky bucket
algorithm as a traffic profile for four benchmark data sets [1].
In the early stage of our project, we also compared ARCUP
and TSW algorithms. Our results did not show the two al-
gorithms are superior to the leaky bucket algorithm. When
the window size is set small, the algorithms are not able to
filter out the instantaneous rate fluctuation. When the win-
dow size is large, the estimation error is propagated to the
entire window duration, which makes the algorithm sensi-
tive to the initial setting of the estimation rate.

Berger et al [5] developed a similar traffic profile using
multiple token banks. In this traffic profile, each flow is
assigned a token bank. And there is one system token bank
that absorbs the overflowed tokens from individual token
banks. The tokens in that token bank can be shared among

different flows. This traffic profile provides a scheme to give
a bonus to a traffic stream if the system is under-loaded.

Reibman et al [19] compares the suitability of two traf-
fic profiles: the token bucket profile and the sliding window
profile for teleconference calls in the context of ATM net-
work. The parameters are chosen after the video sequence
is known. Due to the burstiness of the traffic, they found
that for the video sequences to be conforming to the traffic
profiles, a large bucket size or a large window size is neces-
sary, even when the negotiated average rate is twice the true
average rate.

Ashmawi [2] et al evaluated the impact of different set-
tings of the token bucket profile on the user perceived qual-
ity of video streams over both local and wide area net-
works. They investigates the Expedited Forwarding ser-
vice of Diff-Serv, in which the bucket depth is limited to
at most two Maximum Transmission Units (MTUs). How-
ever, in their experiments, they observed that even constant
rate encoded video stream exhibited bursty behaviors. Con-
sequently, they found a small increase in the bucket depth
could lead to a significant increase in the quality of the video
stream. In a vague sense, this finding coincides with ours.
That is, increasing the bucket size is effective in providing
QoS and limiting misbehaviors.

8. Conclusions and Future Work

In this paper, we describe a new class of traffic profiles
— the 2Bucket profile. When metering bursty traffic, this
profile achieves better performance than the traditional to-
ken bucket profile by decoupling the long term average rate
control from the burst size control. Not only is the profile
able to remember the long term behavior of a traffic stream,
it also enables the network to control the burst size. We also
present two possible refill policies that can be applied to the
2Bucket profile to demonstrate how a network can use the
profile to enforce different QoS policies.

In the future, we intend to build a prototype system and
test the effectiveness of the 2Bucket profile through user
experiments and trace-driven simulation. In particular, we
are interested in testing how different policies and parameter
settings affect users’ QoS assessments.

The performance of usage profiles is obtained via simu-
lation. It will be helpful if we can derive some analytical
models for analyzing the performance of different profiles.
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