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Abstract

We present a personal wireless access agent for mobile
users who require wireless access for multiple, concur-
rent and varied tasks in different locations. Further-
more, the users are assumed to have cognitive and mo-
tivational barriers to providing subjective preference in-
formation to the agent. The task of the personal agent
is then to dynamically model the user, update its knowl-
edge of a market of wireless service providers and select
service providers that satisfies the user’s expected pref-
erences based on minimal or missing information. In
this paper we then show how the user modeling prob-
lem can be represented as a Markov Decision Process
and suggest a number of single and multi-agent mecha-
nisms as possible candidate solutions for the problem.

Introduction
Personal agents are autonomous systems whose decision
making mechanisms must be highly responsive to their
user’s complex and evolving problem contexts. Further-
more, the user and the agent form a highly coupled feed-
back system because the user’s needs are often difficult to
elicit and consequently the agent’s decision making mech-
anism is required to solve its problems under conditions of
high uncertainty which in turn effect the user. We are inter-
ested in the design of both agent decision mechanism and
supporting single and multi-agent information mechanisms
for a personal agent, called the Personal Router (PR), whose
goal is to dynamically provision wireless access for mobile
users (Clark & Wroclawski 2000; Internet & Telecoms Con-
vergence 2002; Faratinet al. 2002). However, the design
problem is complicated due to the complexity in the user’s
context (Faratinet al. 2002). For example, current connec-
tion(s) may instantly become unreachable as mobile users
change locations. Alternatively, different services may be
needed as users dynamically change their preferences or be-
gin different tasks. In addition to modeling the complex-
ity of the user context the agent’s decision making mecha-
nism must operate with uncertain and incomplete informa-
tion. For example, users may be reluctant to engage in costly
communications with the agent over their preferences, spe-
cially if the elicitation space is combinatorially large. In the
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worst case users may be ignorant of their preferences. Fur-
thermore, there exists an inherent variability in the network
itself resulting in uncertainties by both the buyers and the
sellers of a service as to the guarantees that can be made over
the quality of a service (QoS). A net result of this combined
complexity and sparseness of information is our inability
to use classical utility analysis techniques, such as conjoint
analysis, to elicit user preferences (Keeney & Raiffa 1976;
1980).

Instead we propose single agent and multi-agent learning
mechanisms for the user modeling problem. In particular,
we model the agent problem with a Markov Decision Pro-
cess (MDP) framework and then present some initial contri-
butions on how to integrate learning and social mechanisms
within the MDP framework.

The paper is organized as follows. A general description
of the PR problem is briefly described in the first section. We
then present a formal model of the service selection prob-
lem. We then show how this problem description can be
computationally represented within a Markov Decision Pro-
cess followed by how an agent might use the combination
of decision mechanism of an MDP and other information
mechanisms to develop a model of the user. Finally, we
presents our conclusions together with the directions of fu-
ture research.

The Personal Router
The Personal Router (PR) is a device that functions as an in-
terface between the user devices and the Internet. In general,
the goal of the PR is to deliver wireless services to the user
that perfectly satisfy her complex requirements and mini-
mize the user interactions with the system. However, in the
absence of perfect information about the user the PR is likely
to select inappropriate services that causes the user to exper-
iment with the attributes or features of a PR selected service
by continually interacting with the system. The features of
a service we consider important in our applications are both
the perceived quality and the price of a service. Users are
given a user interface to manipulate these features as free
variables viabetterandcheaperbuttons on the PR respec-
tively. The assumption we make is that user will choose
better or cheaper services if the current selected service is ei-
ther of poor quality or high price respectively. This process
of interaction with the PR may continue until the PR learns



to select a service that satisfies the user’s current tasks and
goals.

The following are some of the important features of the
PR problem (see (Faratinet al. 2002) for a more complete
discussion of the problem and it’s features). Firstly, there are
high uncertainties associated to not only the buyers and sell-
ers decisions and actions, but also the agent’s model of the
user. For example, a buyer may not be sure whether she likes
a service until she tries it. Conversely, due to the complexi-
ties of network model a seller may not be able to guarantee
the quality of service that they advertise. Secondly, the user
context is highly complex and is defined by: a) the user’s
goals (or activities—e.g. arranging a meeting, download-
ing music), b) the class of application the user is currently
running in order to achieve her goals (e.g. reading and send-
ing emails, file transfer), c) her urgency in using the service
and d) her location (e.g nomadic or stationary). This context
is highly complex not only because a user may have mul-
tiple concurrent goals/activities but also because different
elements of the user context (goals, locations, running ap-
plications, etc.) may change at different rates. Therefore the
PR task of learning the user’s preferences becomes a non-
trivial problem. However, because of relatively low wireless
service prices we assume users are tolerant to suboptimal
decisions in service selection because the (monetary) cost of
decision errors are low.

Finally, we assume there exists a social network of other
PR agents who are willing to (or can be induced to) share in-
formation at various levels of abstraction about their user’s
preferences and/or the state of the network. Therefore, the
PR of each user has access to a distributed group preference
and network model that can be used to infer (and learn) user
preferences and update it’s knowledge of the network ser-
vices in order to improve the accuracy of service selection.

Representing the Problem as a Markov
Decision Process

In this section we present the PR problem within the Markov
Decision Process (MDP) modeling framework (Kaelbling,
Littman, & Moore 1996; Boutilier, Dean, & Hanks 1999).

Problem Elements
We condition each service selection process instance on the
current context of the user. As mentioned above a user con-
text includes the current running application set, the time
deadline and the location of a user for current goal. We let
C represent the set of all possible contexts andCg ⊆ C be
the set of contexts that are partitioned by the user goalg.
An elementc ∈ C is composed of the tuplec = 〈β, γ, δ〉,
whereβ, γ andδ represent the set of running applications,
user deadlines and locations respectively. Then, a particular
user contextcg ∈ Cg, partitioned by the goalg, is defined
by the tuplecg = 〈βg, γg, δ〉, whereβg, γg andδ represent
the set of running applications compatible with current goal
g, the user deadline for current goalg and the concrete lo-
cation of the user respectively. The location of a user at any
instance of time is represented by both the physical location
as well as the temporal location.

Next we letP represent the set of all possible service pro-
files, where each element of this setP ∈ P is composed
of n featuresfi, P = (f1, . . . , fn). Because service pro-
files available at any time change due to both user roam-
ing (given a nomadic user) and changes in service offerings
(given service providers’ uncertainty in the state of the net-
work) then we assume the (physical and temporal) location
δ of a user partitions the set of possible service profiles avail-
able. Therefore we letP δ ∈ P represent the subset of pos-
sible service profiles available to the user in locationδ.

Next let the set of all user preferences be given byU. We
then let each element of this set,U ∈ U, represent a unique
orderings over all the possible pairs of service profilesP, or
U = (Pi � Pj , . . . , Pl−1 � Pl)1 for all combination ofl
profiles. Similarly, the current user context and goal parti-
tion the set of all possible preference orderings, orU cg ⊆ U.

The ordering generated byU can then be captured by a
utility function u such that:

u(Pi) > u(Pj) iff Pi � Pj (1)

One possible utility function is the simple weighted linear
additive model:

ucg

(Pi) =
n∑

j=1

wcg

ij v(Pij) (2)

whereucg

(Pi) is the utility for profilei in contextc given
user goalg. wcg

ij in turn is the weight that the user attaches
to featurej of profile i in contextc and user goalg. Finally,
v(Pij) is a function that computes the value (or goodness)
of a featurej of profile i.

The MDP Model
An MDP is a directed acyclic graph composed of a set of
nodes and links that represent the system statesS and the
probabilistic transitionsL amongst them respectively. Each
system stateS ∈ S is specified by a set of variables that
completely describe the states of the problem. The value of
each state variable is either discrete or continuous but with
the constraint that each state’s variable values be unique. In
our problem each system stateS ∈ S is fully described by
the combination of: a) the user context (cg = 〈βg, γg, δ〉) for
goalg, b) the set of profiles available in the current location
(P δ) and c) the user interaction with the PR, which we will
represent by the variableI.

Therefore, a complete description ofa system state at
time t is represented bySt = (βg, γg, t, locg, P, I), where
βg, γg, t, locg represent the context of the user for goalg.
Note that for reasons to be given below we disaggregateδ,
the user location and time, to two state variablest andlocg,
the location of the user in temporal and physical space re-
spectively. We can also specify user goalsg in a similar
manner by a subset of system statesSg ⊆ S.

1The operator� is a binary preference relation that gives an
ordering. For example,A � B iff A is preferred toB.



The other element of a MDP is the set of possible ac-
tions A. Actions by either the user, the PR or both will
then results in a state transition, that change the values of
the state variables, to another state in the set of all possi-
ble statesS. In an MDP these transitions are represented by
links L between nodes that represent the transition of a sys-
tem state from one configuration to another after perform-
ing some action. Additionally, each link has an associated
value that represents the cost of the action. In our problem
the set of actionsA available to the useru are defined by
the setAu = {∆loc,∆app,∆I , φ}, representing changes in
the user location, set of running applications, service qual-
ity and/or price demand and no action respectively.2 The
consequences of user actions are changes in values of state
variablesβg, γg, t, locg, P, I; that is, changes in either: a)
the user context (changes in running applications, the time
deadlines for connections, the current time, the user loca-
tion and/or price/quality demands, observed by interaction
with the PR via better and cheaper responses) or b) the set
of currently available profiles or the combination of the state
variables.

The set of actionsA available to the PR are defined by
the setAPR = {∆Pi→Pj , φ} representing PR dropping ser-
vice profilei and selectingj and no action respectively. The
consequence of a PR action is a change in the likelihood
of future user interactionI, where decreasing likelihoods of
user interactions is more preferred.

Additionally, in an MDP the transitions between states
are probabilistic. Therefore there exists a probability dis-
tribution Praj

(Sk|Sj) over each actionaj reaching a state
k from statej.

Finally, we can compute the utility of a service profile
i in contextc for goal g (or ucg

(Pi)—see equation 2) as
the utility of being in a unique state whose state variables
(βg, γg, t, locg, P, I) have values that correspond to service
i in contextc = {βg, γg, t, locg}. The utility of this corre-
sponding state, say statem, is then referred to asU(Sm).
However, since in the formal model above a goal partitioned
the set of all possible contexts, that in turn partitioned the
ordering of profiles, so likewise the utility of a statem is
computed by the functionU(Pi, c

g), the conjunction of both
the the utility of a context given a user goal,U(cg) and the
current profile given the context (U(Pi|cg)). That is:

U(Sm) = U(Pi|cg) ∧ U(cg) (3)

where∧ is the combining operator (Shoham 1997).
The problem ofestimatingand updating the (link) prob-

abilities and (state) utilities of an MDP is described in the
sections below.

2Note, that since time is an element of the state description then
the system state always changes in-spite of no action by either the
user or the PR or both. Furthermore, the granularity of time is
likely to be some non-linear function of user satisfaction, where
for example time is finely grained when users are not satisfied with
the service and crudely grained when they are satisfied. However,
the granularity of time is left unspecified in our model.

Reasoning with MDPs
The MDP formulation of the service selection problem gives
us a representational framework to model the user behaviour
and preferences as the combination of state transition proba-
bilities and utilities. Reasoning with an MDP (or user mod-
eling in our problem) in turn is taken to meanboth:3

• solving an MDP and

• updating the transition and utility estimates over the state
space.

Solving an MDP
On each time step solving an MDP is simply defined by find-
ing a policyπ that selects the optimal action in any given
state. There are a number of different criteria of optimality
that can be used that vary on how the agent takes the future
into account in the decisions it makes about how to behave
now (Kaelbling, Littman, & Moore 1996). Here we con-
sider the finite horizon model, where at any point in time
t the PR optimizes its expected rewardE(

∑h
t=0 rt) for the

next h steps, wherer is the reward the PR receives which
in our problem domain is the utility of the user, observed as
interactions with the cheaper/better button. Therefore, the
model allows the contribution derived from futureh steps to
contribute to the decisions at the current state. Furthermore,
by varyingh we can build agents with different complexi-
ties, ranging from myopic agentsh = 1 to more complex
agentsh > 1.

Given a measure of optimality over a finite horizon of the
state-space solving an MDP (or selecting the best policy) is
then simply selecting those actions that maximize the ex-
pected utility of the user (see example in section above):

π = arg maxE(
h∑

t=0

Ut) (4)

Such a function is implemented as a greedy algorithm.

Estimating and Learning Probabilities and Utilities
The other component of reasoning with the MDP is how
to form an initial estimate and subsequently update model
parameters values (transition probabilities and utilities) that
can be used algorithmically given the MDP representation.

Mechanisms for estimating initial model parameters are
detailed below. We further note that these initial beliefs over
transitions and utilities can then be subsequently updated us-
ing reinforcement learning. In classic reinforcement learn-
ing this is achieved by using the reward signalr to incre-
mentally update the true estimate of the costs from each state
to the goal state. Then the PR maximizes the expected re-
ward given the beliefs. However, under the reinforcement
mechanism the agent needs to not only know the goal of the
user, but the mechanism also requires the goal context to be
repeated in time so that the PR can learn the true costs of

3See (Faratinet al. 2002) for solutions to the problem of in-
tractability in the size of the state-space.



paths to the goal state in an incremental fashion. Unfortu-
nately, these two assumptions cannot be supported by the
service selection problem because of complexity in reason-
ing about the user goals (since user may not be able to for-
mulate and/or communicate goals) and the low likelihood of
user having same repeated goals for the PR to learn from.
However, the PR does have access to the utility information
at each state. Therefore, rather than using the value of the
goal state as the reference point in the optimization problem
we instead propose to use the value of each state explicitly.

Model Estimation Strategies

Estimation strategies we consider can be usefully catego-
rized along two dimensions—single v.s multi agent and
model v.s observation based approaches.

A single agent model based solution to the problem of
deriving the agent’s initial beliefs over the state space is to
simply design agents with (domain) knowledge that repre-
sent the transition probabilities along each dimension of the
MDP, modeled by some distribution with a given mean and
standard deviation. For example, as a first case approxima-
tion we can assume that the probability of a user changing
location increases with time. Likewise, an agent can form
some initial belief over the utility of each state according to
some permissible heuristic such as equal utility to all states.
An alternative single agent approach may be toderive a
user model indirectly through observation of user behaviour
rather than a model constructed at design time. Below we
consider an example of the latter single agent mechanism.

An alternative solution to the belief and utility estima-
tion problem is to use multi-agent mechanisms to spec-
ify missing or uncertain user information needed for the
agent decision making. For example, collaborative filter-
ing mechanisms have been used extensively to make individ-
ual recommendations based on group preferences (Resnick
et al. 1994; Breese, Heckerman, & Kadie 1998). Simi-
larly, we can use the user preference information from a
large number of users to predict state values (for example
predicting the perceived quality for a service profile based
on the preferences of users with similar quality functions)
or transition probabilities (for example likelihood of chang-
ing locations). Furthermore, such a mechanism can ei-
ther be centralized or decentralized. In the former mecha-
nism each PR send its user preference information to a cen-
tralized recommendation server (RS). Individual PRs can
then query the RS for state information (such as quality
estimates of service profiles) and The RS then attempts
to identify users with similar quality functions and gener-
ates a quality estimate. Alternatively, in a decentralized
mechanism (or gossiping/epidemic mechanisms (Pelc 1996;
Hedetniemi, Hedetniemi, & Liestman 1988)) each PR com-
municates not with a center but with a small subset of in-
dividuals in a Peer-to-Peer manner. The choice of which
mechanism is often dependent on the trade-offs involved in
the system properties (such as flexibility, robustness, etc.)
and the quality of the information content of the mechanism.

Updating Transition Probabilities
Assume for now that the agent has some initial probabili-
ties for each transition state (a mechanism for deriving these
initial probabilities using data from the group model as de-
scribed in section below). Then a single agent mechanism
can be constructed that updates the transition probabilities
based on the observation of actual state transitions made by
the user. In particular, we propose the simple exponential
weighted moving average as the update rule. LetSj , . . . , Sn

be the possible transitions from stateSi. Let Pra(Sj |Si) be
the probability of going to stateSj from Si after performing
actiona. Then on a state change fromSi to Sj on actiona,
the probabilities are updated as follows:

Pra(Sk|Si) ← α(1− Pra(Sk|Si)) for all k 6= j

Pra(Sj |Si) ← α + (1− α)Pra(Sj |Si)

where the constantα controls the weight given to most
recent observation of the value of the transition link.

Estimating and Updating Utility of States
We next consider mechanisms for reasoning over the util-
ity of a state. Earlier we argued thatpart of the utility of
a state is derived from the utility of a service profile (equa-
tion 3). We then proposed a candidate linear multi-criteria
utility model (equation 2) that aggregates the values of each
service profile featurej into a scalar value, representing the
overall value of the service profilePi. From the perspective
of the user the two features of a service considered important
are the service price and quality. However, the representa-
tion that is used at the network level for representing ser-
vice quality between the service providers and the PR can
be ontologically distinct from the representations at the user
level. For example, quality may be described in terms of ser-
vice latency or bandwidth, or alternatively, as discrete user
level objects such as ”Gold Service” that encapsulates the
network details from the user. In either case, in order to
computev(Pi,quality) the PR must learn the mapping be-
tween the service description and the quality of a service the
user experiences.

Mapping Service Features to Service Quality
Firstly, the quality of a service profilev(Pi,quality) depends
not only on the user’s preferences but also the current con-
textcg. For example, a high bandwidth, high latency service
may have very high quality for bulk transfer, but has low
quality for IP telephony. In this section we propose a single
agent mechanism for modeling the service quality perceived
by the user for a particular activity. We then show how the
resulting model can be refined with user feedback.

We make the assumption that if a user uses a service pro-
file Pi in a contextcg, then the PR can implicitly learn from
user ”better” feedback data which we call the user’s qual-
ity rating qcg

Pi
. The mechanism then uses this inferred qual-

ity ratings as data points around which to build the quality
functionvcg

(Pi,quality). The quality function is constructed



by interpolating between these data points in a piecewise-
linear manner. Consequently, if the PR has learned the
quality ratingqcg

Pi
of service profilePi for contextcg, then

vcg

(Pi,quality) = qcg

Pi
. Otherwise, for a new profilePj ,

the value ofvcg

(Pj,quality) is linearly interpolated from the
nearest known values ofqcg

Pi
. We can plotvcg

(Pi,quality) in
a n + 1 dimensional space, wheren is the number of ser-
vice profile features. Then for any service profilePi, we
can interpolate the value ofvcg

(Pi,quality) from then + 1
nearest neighbors that enclosePi using repeated piecewise-
linear interpolation.

Using a piecewise-linear function has several advantages.
This approach is scalable because the PR only needs to con-
sider the quality of similar service profiles to determine the
quality of a new profile. Furthermore it does not require any
prior knowledge to generate. Piecewise-linear functions can
closely approximate any monotonic function, and we expect
that perceived quality is likely to be monotonic with many
features including bandwidth and latency. In addition, the
function will tend towards better estimate of the true quality
function as the PR collects more data. It is also robust be-
cause changing the quality of one service profile only affects
the rating for a few similar profiles.

User’s quality ratingqcg

Pi
is inferred in the following man-

ner from user feedback. The mechanism decreasesqcg

Pi
when

the user presses the “better” button (the user is dissatisfied
with the quality of the current servicePi). Conversely,qcg

Pi

increases, according to an increasing convex function of ser-
vice profile usage time, if the user stays with the same ser-
vice profile for a long time (the longer a user stays with the
same profile, the more likely they are satisfied). However,
the following constraints must be met by the mechanism.
Firstly, the user requires some time to evaluate the service
before the PR updatesqcg

P . Also, the user can only evaluate
a service if it is actively being used to transfer data for some
amount of time. Furthermore, if the current service profile
is not limiting network performance, then pressing the “bet-
ter” button does not decrease the quality rating. Finally, con-
fidence in quality estimates should grow as the PR gathers
more data about a service profile. Consequently, the qual-
ity estimate should change more slowly with user feedback.
The updating the quality function is described procedurally
in figure 1.

This update mechanism has several important features.
Service quality estimates get more accurate with time and
user feedback. If a servicePi is overrated, then the user will
soon request a better profile and causeqcg

Pi
to decrease. Con-

versely, if a service is underrated, then its rating will increase
as it is used more by the user. Furthermore, the mechanism
does not depend on the time-scale of button presses. The rel-
ative quality of different service profiles remains unchanged
if the time between button presses is scaled by a constant
factor, as long asτ is small.

Multi-Agent Mechanisms
Initial service selection is a problem in the above single
agent mechanism because the mechanism requires user feed-
back to inferqcg

P i. In cases of missing information

• Let rcg

Pi
be the quality rating of profilePi determined

using the group model.

• Let τ be a constant representing the minimum time of
network usage required for a user to evaluate a service
profile.

• Letφ be a variable representing the degree of confidence
the PR has in the rating.

• Let Cd(φ) andCi(φ) be factors depending on the level
of confidenceφ controlling the rate of rating decrease
and increase, respectively. The functionCd(φ) in-
creases and gets closer to 1 asφ increases, whileCi(φ)
decreases and gets closer to 0 asφ increases.

• Let ε be a constant controlling how frequently the qual-
ity function gets updated.

1. If Pi has not been initialized yet,

• If Pi is not similar to previously seen profiles, then
qcg

Pi
← rcg

Pi
.

• Elseqcg

Pi
← vcg

(Pi).
2. If the user presses the “better” button,

• If the current service profile is not limiting network
performance or ift < τ , ignore the button press.

• Elseqcg

Pi
← Cd(φ)qcg

Pi
and switch to a higher quality

service profile.

3. Else ift > τ and at leastε time has passed since the last
update,

• qcg

Pi
← qcg

Pi
+ Ci(φ)/qcg

Pi

• φ← φ + ε

4. If the user presses the “cheaper” button, switch to a
lower price service profile.

5. If the user presses the “undo” button,q
cg

P i reverts to its
previous value and the PR switches to the previous pro-
file.

Figure 1: Quality Rating Procedure

multi-agent mechanisms can instead be used to reason
about the likely quality preference of the user. Indeed, even
in cases when the PR information set is adequate for the task
of estimating a quality function, a locally inferred model de-
rived from single agent mechanism can still be correlated
and compared to other users’ models in a multi-agent mech-
anism. One such mechanism is collaborative filtering tech-
niques where the PR can use the group’s quality preferences
as a better indicator of quality function. Large number of
data points provided by large number of users can then be
used to predict a user’s perceived quality for a service pro-
file. We predict service profile quality based on the quality
preferences of users with similar quality functions. Each
PR collects user quality preference information from other
nearby PRs in a distributed peer-to-peer network. The PR
then uses a collaborative filtering algorithm to extract infor-



mation from users with similar preferences.
The mechanism is formally defined by the following

steps:

1. Given a userx, a service profilePx, and an activityg:

2. LetSx = {(Pk, h)| userx has used service profilePk for
activity h}.

3. For every usery known to the PR and for every service
profile and activity pair(Pi, g) ∈ Sx, evaluatevcg

q (Pi)
for usery.

4. Use a collaborative filtering recommendation algorithm to
obtain a value forqcg

Px
for userx.

As we noted above this mechanism can also be used to
initialize transition probabilities.

1. Given a userx, statesSi andSj , and an actiona:

2. Let Tx = {Sk| userx has been in stateSk n times },
wheren is a confidence threshold.

3. For every usery known to the PR and for every stateSk

in Tx, get the value ofPra(Sl|Sk) for all statesSl.

4. Use a collaborative filtering recommendation algorithm to
obtain a value forPra(Sj |Si) for userx.

The confidence thresholdn is set to improve the quality
of the data. If the PR has not seen a state very frequently,
then the data may not be very accurate.

Conclusions and Future Work
In this paper we described a user-modeling problem for
the domain of wireless services. An agent, called a Per-
sonal Router, was proposed as a solution to this problem.
We showed how the nature of the problem bounds the in-
formation set of the agent. We then presented a formal
model of the service selection problem and showed how
it can be captured in an MDP representation, defined by
〈S,A,T,C,U〉, the set of all possible system states, user
and PR actions, transitions between states, costs of action
and utility of states. We also hypothesized on how we can
solve the information problem using multi-agent and rein-
forcement learning mechanisms.

There are a number of future directions. Firstly, we are
currently evaluating other single agent (e.g Bayesian) mech-
anisms for capturing and updating initial values for the pa-
rameters of the developed MDP. Next we aim to develop so-
lution strategies that can tractably solve the MDP, for mak-
ing real-time decisions. Strategies currently under consid-
eration include not only state-space pruning strategies but
heuristics for solving piecewise MDPs for time, location and
applications. Once the resulting MDP has been solved op-
timally on a tractable decision space we seek to compare
the efficiency of heuristic algorithms that can be scaled up
to larger search spaces. Another long term goal is to assess
the appropriateness of qualitative information within the de-
veloped framework. Finally, the overall goal of this project
is to develop system prototypes and perform user-centered
field trials.
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