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Abstract

The PersonalRouteris a mobile personaluseragent
whosetaskis to dynamicallymodelthe user updateits
knowledgeof amarket of wirelessserviceprovidersand
selectprovidersthatsatisfiegshe users expectedprefer
ences. The task of seamlesslymanagingthe procure-
ment and execution of short or long term connection
for amobileuseris furthercomplicatecbecausenobile
usersperformsmultiple, concurrenandvariedtasksin
differentlocationsandarereluctantto interactandpro-
vide subjectve preferencenformationto the agent.In
thispapemwe presentdetaileddescriptiorandaformal
modelof theproblem.Wethenshav how theusermod-
elingproblemcanberepresentedsa Markov Decision
Processandsuggesteinforcementearningandcollab-
orative filtering astwo candidatesolutionmechanisms
for theinformationproblemin theusermodeling.

Intr oduction

The PersonaRouter(PR) projectis a multi-disciplinaryre-
searcheffort whoseoverall goal is to analyzethe technol-
ogy and policy interactionsthat can occurin future wire-
less protocol and simultaneouslyassistin designingequi-
tablemulti stale-holdemolicies(Clark & Wroclawvski 2000;
Internet& TelecomsCornvergence2002). A crucial part of
thisgoalis thetechnologicainfrastructurehatsupportsmo-
bile accesso wirelessservices Suchaninfrastructuregposes
anumberof challengeslongvariousdimensionsncluding:

o network supportfor mobility andfasthand-of

¢ servicedescriptionandadwertisemenmechanisms
e pricing policies

¢ determinatiorof quality of service

¢ network traffic monitoring

e usermodeling

The lastproblemis the mainfocusof this paper We are
interestedin developing agentsthat model their users re-
guirementsn orderto selector negotiatewith, wirelessser
viceproviders.In this papeme presenaigenerablescription
of the usermodelingproblemin a wirelessaccesgiomain,
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concentratingon an in-depthproblemdescriptiontogether
with somepreliminarysingleand multi-agentsolutions. In
particular the underlyingproblemaddressedn this paper
is the problemof decisionmaking with uncertainand in-
completeinformation. The sourcesof scarcityandincom-
pletenes®f informationin the wirelessdomainaredueto:
a) changinguserpreferencegjivendifferentserviceandre-
guirementontexts; b) the sparenessf userpreferencelata
giventhe combinatoriallylarge elicitation spaceandc) the
variability inherentin the network itself resultingin uncer
taintiesby both the buyersandthe sellersof a serviceasto
the guaranteeshat can be madeover the quality of a ser
vice (QoS).Onenetresultof suchsourceof compleitiesis
ourinability to useclassicaltility analysigechniquessuch
as conjoint analysis,to elicit userpreferencegKeeng &
Raiffa1976;1980). Furthermoreclassicadecisionanalysis
technique$iave a numberof limitationssuchas*“clamping”
thedecisionervironmentto includea setof manageabland
well beharedfeaturegDoyle & Thomasor1999).

The contributions of this paperare mechanismgo rep-
resentand assistagents decisionmaking in light of such
classe®f uncertaintiesTo achieve this we presenta formal
descriptionof the wirelessserviceselectionproblemthat
is implementableas a Markov decisionprocess. We then
presensomeinitial contributionson how to integratelearn-
ing andsocialmechanismsvithin the MDP framework that
model PR’s incrementalupdatingof individual userprefer
encegiveninformationuncertaintyandincompleteness.

The paperis organizedasfollows. An examplescenario
is briefly describedn the first sectionfollowed by its fea-
ture. We thenpresent formal modelof theserviceselection
problemthatgivesusalanguagédor describingthe problem
in an unambiguousnanner We thenshow how this prob-
lem descriptioncan be computationallyrepresentedvithin
a Markov DecisionModel followed by how anagentmight
usethe combinationof decisionmechanisnof anMDP and
other information mechanismgo develop a model of the
user In the penultimatesectionwe informally touch on
thepossibility of modelingtheinteractiondn theentiresys-
tem, consistingof theuserandthe agentasinteractionsn a
Markov game.Finally, we present®ur conclusiongogether
with the directionsof futureresearch.



An Example Scenario

Considera userwho is goingto meeta friend for lunch at
a restaurant.However, the userdoesnot know how to get
to therestaurantso on his way out of the office he useshis
web browseron his PDA to find the location of the restau-
rant. The PDA notifies a device, which we will call the
Personal Router(PR), thatits currentactivity is PDA web
browsingandrequestsietwork service.The PRis theinter-
facebetweeruserdevicesandthe Internetthat, for wireless
servicesatleast,is currentlyorganizedn hierarchicalayers
consistingof basestationsthat provide wirelessservicesto
individual userswho in turn receive servicesfrom upstream
ISPs.Assumethatthe PRknows aboutthreedifferentavail-
able serviceprofiles® descriptionof servicesprovided by
accesproviders:thewirelessserviceprovidedby theusers
compary, Verizon’s basic wirelessservice,and Verizon's
premiumservice.Basedon the users pastbehaior, the PR
knowsthathe prefershis compaty’sserviceif it's available.
The PR connectgo his compaly’saccespointandauthen-
ticatesitself. All of this happensdn a fraction of a second.
The userthenuseshis web browserto getdirectionsto the
restaurant.Whenheis donethe web browsertells the PR
thatit nolongerneeddnternetservice.The PRdisconnects
from thecompary accesgoint.

Assumenow that the usergetsto the restaurang little
early, so he turnson his MP3 player and listensto some
music. He likeswhat he hearsand askshis MP3 playerto
downloadmoresongsby the currentartist. The MP3 player
requestshatthe PRselecthebestservicefor thecurrentac-
tivity, bulk file transfer While the userwaswalking, the PR
was collecting serviceprofile announcementfom access
pointsbroadcastingheir availableservices.The PR knows
of threedifferentserviceprofilesin thisarea:therestaurans
wirelessserviceandVerizon's basicand premiumservices.
Assumethatthe userhasnever beento this locationbefore,
but otherPR usershave. The PR consultsa mechanisnihat
maintainsand updatesgroup preferencesnd selectsfrom
this information sourceVerizon's basicservice. However,
the useris dissatisfiedby the currentservice,noticing that
the musicis downloadingslowly, sohe presses buttonon
thePRtoindicatethatheis dissatisfiedvith theservicequal-
ity. AgainthePRrefersto thegrouppreferencelatabasand
determineshattherestaurans serviceis higherquality than
Verizons basicservice.The PRswitchesto therestaurans
wirelessservice. However, the useris still dissatisfiedwvith
the performanceand asksfor a higher quality profile once
again.ThePRselectghe premiumservice.

In generalthe goal of the PRis to deliver servicego the
userthatperfectlysatisfyhis/herequirementandminimize
their interactionswith the system.However, in the absence
of perfectinformationaboutthe userthe PRis likely to se-
lectinappropriateserviceghatcausesheuserto experiment
with the attributesor featuresof a PR selectedserviceby
continually interactingwith the system. The featuresof a
servicewe considerimportantin our applicationsare both
the perceved quality andthe price of a service. Usersare

1This knowledgeis not embeddednto the PR but is dynami-
cally updatedby the PR.

givenaninterfaceto manipulatethesefeaturesasfree vari-

ablesvia a better and cheaperbuttonson the PR respec-
tively. The assumptionrwe make is that userwill choose
betteror cheapeservicesf thecurrentselectederviceis ei-

therof poorquality or high price respectiely. This process
of interactionwith the PR may continueuntil the PR learns
to selecta servicethat satisfiesthe users currenttasksand
goals.

Featuresof the Scenario

We identify a numberof importantproblemfeaturesin the
above scenariothat form the basisof the systemrequire-
mentsand constrainthe spaceof possiblesystemdesign.
The problemfeatureare:

e multi buyer seller marketplacefor J finite numberof
wirelessservices,where M different service providers
(ISPsand/orindividuals)sell serviceprofileswith differ-
entiatedpriceandquality featureso N numberof buyers.
Furthermorethe tradingmechanisntaneitherbe nego-
tiation or take-it-or-leave it, and can occurover both a
spotmarket (shortterm)anda contract(longterm). How-
ever, althougha usermay have a long term contractfor
a services/hecanalsoselect/ngotiatea servicefrom the
currentshorttermmarket.

e repeated encounters between buyers and sellers.
Whereassellersarelik ely to be stationary buyerson the
otherhandmay visit locationsrepeatedly Oneimplica-
tion of this featureis that complicatedincentve mecha-
nismsmaynotbeneededn this marketto preventgaming
of thesystemby eitheraselleror abuyer. In turn,cooper
ationmaybecomeselfenforcingthroughsomereputation
mechanisngiven encounterdbetweenbuyersandsellers
arerepeated.

e uncertainty associatedo not only the buyersandsellers
decisionsand actions,but also the agents model of the
user Buyersmay not be sureof their preferencesor a
service. For example,a buyer may not be surewhether
shelikesa serviceuntil shetriesit. Corversely dueto
the complexities of network model a seller may not be
ableto guarante¢hequality of servicethatthey adwertise.
Finally, usersareunwilling and/orunableto extensvely
interactandcommunicateaheir preferenceso the PR.

o complexservice profilesadwertisedby serviceproviders.
ISPs may offer serviceswith elaboratedescriptionsof
quality and price. Quality may be describedobjectvely
in termsof bandwidthandlateng, or with asubjectve la-
belsuchas“Gold Service”.Servicepricingis likely to be
somecomplicatedunctionof anumberof factors.For ex-
ample,costmay be givenasa simpleprice per unit time,
or it maydependuponfactorssuchastime of day, amount
of usageand previously signedcontracts. The PR must
beableto understandhesetypesof serviceprofilesusing
somenetwork andusermodels.

¢ contextof auser definedby thefollowing statevariables:

— goals(or actuities) of the user(e.g. arranginga meet-
ing, downloading music). Usersmay have multiple
concurrengoals/actiities.



— the classof applicationthe useris currently running
in orderto achieve her goals(e.g. readingand send-
ing emails, file transfer). Furthermore different ap-
plications have differentbandwidthrequirementsand
cantolerateservicedegradationdifferentially (Shenler
1995).

— the urgeng of the userrequest(e.g. urgent, flexible,
intermediate)

— thelocation of the user We distinguishtwo possible
user location states: nomadicand stationary In no-
madic statea user moves throughlocationsspeedily
(e.gin ataxi). Thereforeoverheadtostsshouldbe min-
imized during serviceprovisioning givenusersrequire
the servicesinstantaneously Therefore,PR needsto
be reactve. Corversely in a stationarystatea user
is in one location (e.g in a coffee shop). Therefore
communicationcostscan be trade-of againstnegoti-
ation/selectiorof betterservices PR canthereforepro-
vision moreresourced the courseof serviceselection
processlin eitherstatethe PRneedgo bepro-activein
updatingits knowledgeof serviceprofiles.

e rapidly changingcontextof auser Therateatwhichthe
PR switchesbetweenserviceprofilesandthe speedwith
which the userchangegyoalsand applicationsmalesit
difficult to learnuserpreferencesThe problemis further
complicatedbecausehe differentuseractvities andap-
plications have several differenttemporalprofiles. The
PRneeddo learnhow muchauserlikesaservice but the
userevaluatesservicesbasedon the performanceof the
network overthelastseseralsecond®r minutes.

continuous serwvice switching by a user becauseof a
combinationof mobility andchangingusergoals. There
also exists some switching costs associatedwith both
droppinga profile andhandwerto anothermprovider.

minimal userinterface betweertheuserandthePR.The

userinteractswith theagentvia anextremelysimpleuser
interface(Ul) that consistsof only threebuttons: better,

cheaperandunda Thesebuttonsprovide feedbacko the

personalouteraboutthe currentserviceandalsorequest
thatthePRswitchto adifferentservice. Theuserdoesnot

expresspreferencesxplicitly; insteadthe PRmustlearn
asmuchaspossibleaboutuserpreference$rom the way

theuserinteractswith theUl. ThePRin turnmayprovide

feedbackinformationto the userin termsof pricesand
possibly quality of a service,althoughfeedbackon the
quality of aserviceis morelik ely to bebasedntheusers

perceptiorof how well the applicationsarerunning.

user tolerance to suboptimaldecisionsin serviceselec-
tion. Becausehe operatingcostsof a single servicefor
theselleris almostzeroandthe periodof accesslemand
for a buyer canbe short,comparedo non-wirelesscon-
tract services,then pricesfor spot market wirelessser
vicesarelikely to berelatively smallercomparedo prices
for other types of commodity goods. Thereforeusers
maybemoretolerantof suboptimalservices(or noisein
the serviceselectionprocess)becausehe cost of deci-
sionerrorsarelow. Anothersecondarymplicationof low

pricesis that coordinationcostsmay be higherthanser
vicespricestherebycreatinga barrierto coalitionamong
thebuyersto drive down prices.

o distributed group preference and network models
learnedby the PR in orderto improve the accurayg of
serviceselection.The PR usesgrouppreferenceso infer
userpreferenceslt alsousesinformationaboutthe net-
work gatheredby nearbyPRsto improve its knowledge
aboutwhich network servicesare available. The proto-
colsusedfor learningthegroupandnetwork modelsmust
be efficient and be ableto dealwith imperfectinforma-
tion andinaccessiblé’Rsin the network. The limited re-
sourcef the PRmakesit importantthatwe identify the
mostusefuldatato retrieve andretain.

Selvice SelectionProblem

Figure 1 shaws the functional architecturefor the service

selectioncomponenbf the PR. The functionalcomponents
andtheirinteractionghatmake up the PR areshawvn inside

thedashedox. The aim of thiswork is to definerepresen-
tation and algorithmsfor the problemsof serviceselection
givenindividual andgroupmodels.Theinputsto this selec-

tion functionare:
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Figurel: PRArchitecture

o setof serviceprofiles, derived from the network model.
For currentpurposeswve will assumehe selectionpro-
cesshasaccesdo somewell definedsetof servicepro-
files P derived from a setof mechanismgor modeling
thenetwork. However, dueto theshortrangenatureof the
wirelesscommunicatiorthe compositionof the setin any
instanceof time canchangebecausehe location of the
userchanges.Furthermore the complexity of a service
descriptioncanvary accordingto a numberof variables.
Onepossibledescriptionschemess in termsof the price
andbandwidthof the serviceprofile, wherebandwidthit-
self canbe describedn a canonicallyin termsof other



network level servicefeaturessuchaspeakrate,average
burst, etc. Theimportantpoint is that differentusersare
likely to experiencdifferentsubjectve quality associated
with the bandwidth.

¢ amodelof theindividual userandtheir preferencesver
the setof profilesavailablein the market. This inputis
describedn detailbelow.

e amodelof thegrouppreferences

e applicationrequirementsThe selectionof awirelessser
vice is not only dependenbn whatthe userrequiresbut
alsotherequirement®f the application. However, since
thebehaviour of theapplicationis underthecontrolof the
applicationdesignerits behaviour is thereforeassumed
to be more predictablethan the userand can be gener
ally modeledby anapplications elasticityprofile to band-
width levels (Shenler 1995). For instancetext basedap-
plicationssuchasemail,ftp or telnetarecalledelasticap-
plicationsbecaus¢hey cantoleratedegradatiorof service
quality but still operateandtheir responserofile exhibit
decreasingnaminal ratesof improvementwith increas-
ing bandwidth. Corversely inelasticapplications,such
asvideoconferencingcanonly operatewithin a strictre-
gions of bandwidthlevels. We will concentrateon the
userrequiremenproblemin this paper

A Formal Model of the Sewice SelectionProblem

A formal modelof the problemabove is developedin this
section.Thegoal of this modelis notto committo or spec-
ify domainlevel detailsbut insteadprovide a languagefor
specifyingimplicit and explicit objectsthat exist andrela-
tionsthatholdin theproblemdescriptiorabove. By implicit
objectswe meanobjectswhosetrue valuesareinaccessible
to theagent.For example the agentmay not know the goal
or time deadlinesof the userbut asdesignersf agentswe
candevelopagentghathave probabilisticrepresentationsf
andtheability to reasorover suchobjects.

We condition eachserviceselectionprocessnstanceon
the currentcontext of the user As mentionedabove a user
context includesthecurrentrunningapplicationset,thetime
deadlineandthe locationof a userfor currentgoal. We let
C representhe setof all possiblecontextsandC? C C be
the setof contets that are partitionedby the usergoal g.
An elementc € C is composedf thetuplec = (8,7, ),
wheref, v andé representhe setof runningapplications,
userdeadlinesandlocationsrespectiely. Then,a particular
usercontet ¢? € CY, partitionedby the goal g, is defined
by thetuplec? = (89,~9,6), where39,~9 andd represent
the setof runningapplicationscompatiblewith currentgoal
g, the userdeadlinefor currentgoal g andthe concretelo-
cationof theuserrespectiely. Thelocationof auseratary
instanceof time is representetdy boththe physicallocation
aswell asthetemporallocation.

Next welet P representhesetof all possibleservicepro-
files, whereeachelementof this set P € P is composed
of n featuresf;, P = (f1,-.., fn). Becauseservicepro-
files available at ary time changedue to both userroam-
ing (givena nomadicuser)andchangesn serviceofferings

(givenserviceproviders' uncertaintyin the stateof the net-
work) thenwe assumehe (physicalandtemporal)location
¢ of auserpartitionsthesetof possibleserviceprofilesavail-
able. Thereforewe let P° € P representhe subsebf pos-
sible serviceprofilesavailableto theuserin locationé.

LetR representhesetof all requirementsor all applica-
tions (elastic,inelasticor adaptve). Furtherlet the setof all
requirement®sf agivenapplication,R € R, begivenby the
setof m serviceprofile featuresor R = (f1,..., fm). We
thenlet R*° C R representhesubsebf all requirementsf
all applicationsR. thatarebeingcurrentlyusedby the user
in context ¢ for goalg.

Next let the setof all userpreferencebegivenby U. We
thenlet eachelementof this set,U € U represent unique
orderingsover all the possiblepairsof serviceprofilesP, or
U= (P> P,...,P_1 = P)?for all combinationof
profiles. Similarly, the currentusercontext andgoal parti-
tionthesetof all possiblepreferencerderingspr U<’ C U.

The orderinggeneratedy U canthenbe capturedby a
utility functionu suchthat:

U(PZ) > U(P]) iff P> Pj Q)

Onepossibleutility functionis thesimpleweightedinear
additve model:

u (P) = 3wy v(Py) @)
j=1

whereu®’ (P;) is theutility for profilei in context ¢ given
usergoal g. wfj in turnis theweightthatthe userattaches
to featurej of profile in context ¢ andusergoal g. Finally,
v(P;;) is afunction that computeshe value (or goodness)
of afeaturej of profileq.

Finally, we canalso modelthe utility of switchingto a
new serviceprofile as:

e’ (P, = Pj) = Eu’ (P)) — (w’ (Pi) + cost(P; = P}))  (3)

whereEuffj is the expectedutility of switchingto anew

profile j andcost(P; — P;) isthe(switchingandmonetary)
costof switchingfrom profile ¢ to profile j.

Representingthe Problem asa Mark ov
DecisionProcess

The aim of this sectionis to shav how the above for-
mal model of the PR problem can be describedwithin
the Markov DecisionProces{MDP) modelingframeavork
(Kaelbling, Littman, & Moore 1996; Boutilier, Dean, &
Hanks1999). An MDP is a directedacgyclic graphcom-
posedof a setof nodesandlinks thatrepresenthe system
statesS andtheprobabilistictransitionsL. amongsthemre-
spectvely. EachsystemstateS € S is specifiedby a setof

2The operators is a binary preferenceelation that gives an
ordering.For example, A > B iff A is preferredto B.



variableshatcompletelydescribethe statesof the problem.
Thevalueof eachstatevariableis eitherdiscreteor contin-
uoushut with the constrainthateachstates variablevalues
beunique. In our problemeachsystemstateS € S is fully
describedy the combinationof:

e theusercontet (¢? = (89,9, §)) for goalg

e the setof profiles availablein the currentlocation (P?)
and

¢ theuserinteractionwith the PR,whichwe will represent
by thevariablel!.

Thereforeacompletedescriptiornf a systenstateattime
tis:

wheref9,~9,t,loc? representhe context of the userfor
goalg. Notethatfor reasongo begivenbelow we disaggre-
gated, theuserocationandtime, to two statevariables and
loc?, thelocationof theuserin temporalandphysicalspace
respectiely. We canalsospecifyusergoalsg in a similar
mannerby a subsebf systemstatesS? C S.

Theotherelementof aMDP is the setof possibleactions
A. Actions by eitherthe user the PR or bothwill thenre-
sultsin a statetransition,thatchangethe valuesof the state
variableqseetuple4), to anotherstatein the setof all possi-
ble statesS. In an MDP thesetransitionsarerepresentetly
links L betweemodesthatrepresenthetransitionof a sys-
temstatefrom oneconfiguratiorto anotherafterperforming
someaction.Additionally, eachlink hasanassociatedalue
thatrepresentshe costof theaction.

In our problemthe setof actionsA availableto theuseru
aredefinedby thesetA®* = {Aloc AP Al ¢} represent-
ing changesn theuserlocation,setof runningapplications,
servicequality and/orprice demandand no actionrespec-
tively.® The consequencesf useractionsare changesin
valuesof statevariables3?,~9,t,loc?, P, I; thatis, changes
in either:

¢ theusercontect (changesn runningapplicationsthetime
deadlinedor connectionsthe currenttime, theuserloca-
tion and/or price/qualitydemandsobsened by interac-
tion with the PRvia betterandcheaperesponsesyr

¢ thesetof currentlyavailableprofilesor
e thecombinationof the statevariables.

Corversely the setof actionsA availableto the PR are
definedby the set APE = {AFi=Fi 4} representing®R
droppingserviceprofile i andselecting; andno actionre-
spectiely. The consequencef a PR actionis a changein
thelik elihoodof future userinteraction/, wheredecreasing
likelihoodsof userinteractionss morepreferred.

3Note, thatsincetimeis anelemenbf thestatedescriptiorthen
the systemstatealways changesn-spiteof no actionby eitherthe
useror thePRor both. Furthermorethegranualityof timeis likely
to be somenon-linearfunction of usersatisaction, wherefor ex-
ampletime is finely grainedwhenusersare not satisfiedwith the
serviceandcrudelygrainedwhenthey aresatisfied.However, the
granualityof timeis left unspecifiedn our model.

Additionally, in an MDP the transitionsbetweenstates
are probabilistic. Thereforethere exists a probability dis-
tribution Pr,, (Si|S;) over eachactiona; reachinga state
k from statey.

Finally, we can computethe utility of a serviceprofile
i in context ¢ for goal g (or u®’ (P;)—seeequation2) as
the utility of beingin a uniquestatewhosestatevariables
(B9,7v9,t,loc?, P, I) have valuesthatcorrespondo service
iin context ¢ = {B9,79,t,locd}. Theutility of this corre-
spondingstate,say statem, is thenreferredto asU(S,,).
However, sincein theformal modelabove agoalpartitioned
the setof all possiblecontexts, thatin turn partitionedthe
orderingof profiles, so likewise the utility of a statem is
computeddy thefunctionU (P;, ¢?), theconjunctionof both
thethe utility of a context givena usergoal,U(c?) andthe
currentprofile giventhe context (U (P;|¢?)). Thatis:

U(Sm) = U(B|C?) AU(C?) (®)

whereA is thecombiningoperator{Shohaml997).

Example MDP of PR Setvice SelectionProblem

A subsebf the statespacgnodes)andtransitionpaths(ver
tices)is shown in figure 2 belon. Bold and normallinks
representhe action performedby the userandthe PR re-
spectvely. Assumehecurrentstateof thesystemattimet is
givenby thenodeS;, representing unigquecontet, profile
setanduserdemandS; = (589,49, t,loc?, P, I). At thenext
time stept + 1 the PR may decideto selectanotherservice
profile P’ for goal g becausehe utility of stateS, = 0.8
is greaterthanS; = 0.2. However, consequencesf actions
arein-deterministicin an MDP. Thereforeassumethat the
PRs action APH = AP=F resultsin the statetransition
S; — Sk, correspondingo S, = (89,49,¢,loc?, P ,I),
with probability 0.95 (or Pr , ., .+ (Sk|S;) = 0.95). How-
ever, dueto noisein the selectionprocesghereis still a5%
chancethat action AP~ resultsin anotherstateS; that

correspondso someotherprofile P beingused.Therefore
the expectedutility of stateSy, EU(Sk), is computedas
EU(SK) = PTAP—)P' (SHS,)U(Sk) =0.95 x 0.8 = 0.76.
Next assumehe usertakesan actionat the next time step

Figure2: An Exampleof a Portionof a StateSpace

t+2 fromeitherSt+? = S, (PRselectedP”) or St+2 = S,
(PRseIectedP'). Theusermayatany momentin time take



mary simultaneousactionsrepresentetly thecompoundac-
tion A* = {Alc x AP x A}, Thereforefor explana-
tory purposeswve only considerthe userprice quality de-
mandaction,A”. Furtherassumehatstated to o represent
changedn only quality demandprofile (obsened as “bet-
ter” request).Then,the valueof thelinks from Sy, represent
the belief model of the PR of whatis the likelihood of the
userrequestingdifferent servicequality services(here S,

andsS,) giventhecurrentserviceprofile P atstateS;.

The problemof estimatingandupdatingthe (link) prob-
abilities and (state)utilities of an MDP is describedn the
sectionshelow.

Reasoningwith MDPs

TheMDP formulationof theserviceselectiorproblemgives
usarepresentationdtamenork to modeltheuserbehaiour
andpreferenceasthe combinatiorof statetransitionproba-
bilities andutilities. Reasoningvith anMDP (or usermod-
elingin our problem)in turnis takento meanboth

¢ solvinganMDP and

¢ updatingthetransitionandutility estimate®verthestate
space.

However, wefirst consideithe problemof intractabilityin
the size of the state-spacea seriousconsideratiorin MDP
problems,beforereturningto the problemof how to opti-
mally reasorwith MDPs.

Pruning the State-Space

Theoreticallyeachstateof a systemcanaccess/transitioto
ary otherpossiblestate. Thatis, we canrepresentll pos-
sible statesof the system(or possibleworlds) throughcon-
structionof a graphof nodesandlinks of an MDP thatare
fully connected.

However, in practicecomputingoptimal policies when
there are exponentially large numberof statesand transi-
tions is intractable. Thereforewe usedomainlevel struc-
turalassumptionso make the solutionto the MDP problem
tractable. The structuralassumptiorwe make is that natu-
ral environmentalconstraintdimit the numberof possible
statesthat can be reachedfrom ary other state? Firstly,
we partition the transitionsof an MDP into its temporal,
spatial,applicationand userdemanddimensions(or parti-
tioning usingelementf the context of the user). We then
male the following assumptiongboutthe structureof the
MDP. Along thetemporaldimensionthe MDP we consider
is non-stationanput instead‘unfolds” sequentiallyin time.
Theassumptionwe make aboutthe spatialdimensionof the
problemis thattheusercannotbein differentlocationsatthe
samdime. Therefore stateswith differentlocationbut same
time valuesare unreachable Similarly, runningof applica-
tion/s is not instantaneousut unfoldsin time. Therefore
stateswhere an applicationis running and simultaneously
turnedoff areunreachableFinally, usersalsorequiretime

4Assumptionsessentiallyprune the transition/links between
statesand canbe viewed functionally to be equivalentto infeasi-
ble regionsin constrainedptimizationproblems.

to experiencehe services.Therefore therearenot only no

transitionsto stateswith differentdemandprofilesin same
time frame sanctionedput alsothereis likely to be some
increasingor decreasindikelihood of changesn demand
over time given by someprobability distribution. Finally,

the transitionsin the state-spacean be further reducedby

assumingthat, for a given granuality of time, only states
adjacentin time aredirectly connectecandall otherfuture

statesare reachablevia anindirect path (i.e. future states
cannotbereachedn asinglestep).

Solvingan MDP

Oneachtime stepsolvinganMDP is simply definedby find-
ing a policy 7 that selectsthe optimal actionin ary given
state. Therearea numberof differentcriteria of optimality
thatcanbe usedthatvary on how the agenttakesthe future
into accountin the decisionst makesabouthow to behae
now (Kaelbling,Littman,& Moore1996).Herewe consider
thefinite horizonmodel,whereatary pointin time ¢ thePR
optimizesits expectedrewardfor thenext h steps:
h
E(Y_ ) (6)
0

t=

wherer is the rewardthe PRreceiveswhichin our prob-
lemdomainis theutility of theuser obseredasinteractions
with the cheaper/bettdoutton. Therefore the modelallows
the contribution derivedfrom future h stepsto contrituteto
the decisionsat the currentstate. Furthermorepy varying
h we canbuild agentswith differentcomplexities, ranging
from myopicagentsh = 1 to morecomplex agentsh > 1.

Givenameasuref optimality over afinite horizonof the
state-spacsolvingan MDP (or selectingthe bestpolicy) is
then simply selectingthoseactionsthat maximizethe ex-
pectedutility of the user(seeexamplein sectionabove):

h
T = angy maxE(Z Uy) (7

t=0

Suchafunctionis implementedasa greedyalgorithm.

Estimating and Learning Probabilities and Utilities

The other componentof reasoningwith the MDP is how
to form aninitial estimateand subsequentlypdatemodel
parametersalues(transitionprobabilitiesandutilities) that
canbeusedalgorithmicallygiventhe MDP representation.

Onesingleagentsolutionto the problemof deriving the
agents initial beliefs over the statespaceis to simply use
domainknowledgeto representhe transitionprobabilities
alongeachdimensionof the MDP assomedistribution with
agivenmeanandstandardieviation. For example,asafirst
caseapproximationwe can assumethat the probability of
a userchanginglocationincreasesvith time. Likewise,an
agentcan form someinitial belief over the utility of each
stateaccordingto somepermissibleheuristicsuchasequal
utility to all states.



An alternatve solution to the belief and utility estima-
tion problemis to use multi-agent mechanismgo spec-
ify missing or uncertainuser information neededfor the
agentdecisionmaking. For example, collaboratve filter-
ing mechanismbave beenusedextensively to make individ-
ual recommendationbasedon group preferenceg¢Resnick
etal. 1994; Breese,Heckerman,& Kadie 1998). Simi-
larly, we can usethe user preferenceinformation from a
large numberof usersto predict statevalues(for example
predictingthe perceved quality for a serviceprofile based
on the preference®f userswith similar quality functions)
or transitionprobabilities(for examplelik elihoodof chang-
ing locations). Furthermore,such a mechanismcan ei-
ther be centralizedor decentralized.In the former mecha-
nismeachPR sendits userpreferencenformationto a cen-
tralized recommendatiorsener (RS). Individual PRs can
then query the RS for stateinformation (such as quality
estimatesof service profiles) and The RS then attempts
to identify userswith similar quality functionsand gener
atesa quality estimate. Alternatively, in a decentralized
mechanisnfor gossiping/epidemimechanisméPelc1996;
HedetniemiHedetniemi& Liestman1988))eachPRcom-
municatesnot with a centerbut with a small subsetof in-
dividualsin a Peerto-Peermanner The choice of which
mechanismis oftendependenbn the trade-ofs involvedin
the systemproperties(such as flexibility, robustnessgtc.)
andthequality of theinformationcontentof themechanism.

Theseinitial beliefsover transitionsandutilities, derived
from a multi-agentmechanismcan then be subsequently
updatedusingreinforcementearning. In classicreinforce-
mentlearningthisis achievedby usingtherewardsignalr to
incrementallyupdatethetrueestimateof thecostsfrom each
stateto the goal state. Thenthe PR maximizesthe expected
reward giventhe beliefs. However, underthe reinforcement
mechanisntheagentneedgo notonly know thegoal of the
user but themechanisnalsorequiresthe goalcontext to be
repeatedn time so thatthe PR canlearnthe true costsof
pathsto the goal statein anincrementalfashion. Unfortu-
nately thesetwo assumptiongannotbe supportedoy the
serviceselectionproblembecausef compleity in reason-
ing aboutthe usergoals(sinceusermay not be ableto for-
mulateand/orcommunicateyoals)andthelow lik elihoodof
userhaving samerepeatedyoalsfor the PR to learnfrom.
However, the PR doeshave accesdo the utility information
at eachstate. Therefore ratherthanusingthe value of the
goalstateasthereferencepointin the optimizationproblem
we insteadproposeo usethe valueof eachstateexplicitly.

Cooperative Extensive Games

Theabose modelandtentative solutionwasframedfrom the
PRproblemperspectie—howr to modeltheuser We believe
the systemof boththe userandthe PR canbe modeledasa
game or morepreciselyasa cooperatie bi-lateral,stochas-
tic extensive gamebetweerthe PRandthe user(Rubinstein
1982;Littman 1994). Work to datehaslooked at how non-
cooperatie and stratgyic gamescan be implementedwith
a MDP frameawork (Littman 1994). In thesestratgic mod-
els both playersare non-cooperatie, eachmaking a single
move simultaneously Furthermoreeachagentchoosesa

stratgyy from a setof possiblestratgjiesthatis in (Nash)
equilibrium. However, dueto errorsin executionthe out-

comesreachedare stochastic. Our problemon the other
handis not only regulatedby a sequentiaprotocol of user

PRinteractiongreferredto asextensive games)ut alsothe

natureof thegameis notadwerseriaimeaninghattheagents
canagreeto a courseof action and be mutually commit-

tedto thatagreement.Thereforethe informationsetof the

agentnot only reflectsthe true movesby the user(i.e the

useris notbeingstrataic in its interactionswith the PR) but

alsoincreasest eachstepof the game.Equilibria of exten-

sive gameshave beenmodeledfor non-cooperatie games
(assub-gameperfectequilibrium (Rubinstein1982). How-

ever, the equilibria of thesegamesattemptsto remove un-

likely threatsthat playerscan make at eachstepof inter-

action. Therefore sincethe useris unlikely to be stratayic

thenotherequilibriasolutionsmustbe soughtto analyzethe

steadystateof the PR-uselinteraction.

Conclusionsand Futur e Work

In this paperwe describeda usermodeling problem for
the domain of wirelessservices. An agent,called a Per
sonalRouter was proposedas a solutionto this problem.
We shaved how the natureof the problemboundsthe in-
formation set of the agent. We then presenteda formal
model of the service selectionproblem and shoved how
it can be capturedin an MDP representationdefinedby
(S, A, T, C,U), the setof all possiblesystemstates,user
and PR actions,transitionsbetweenstates,costsof action
and utility of states.We alsohypothesizedn how we can
solve the information problemusing multi-agentandrein-
forcementearningmechanisms.

Thereare a numberof future directions. Firstly, we are
currently developing multi-agentand single agentmecha-
nismsfor capturinginitial valuesfor the parameter®f the
developedMDP. Next we aim to developsolutionstrateyies
that cantractablysolve the MDP, for making real-timede-
cisions.Stratgiescurrentlyunderconsideratiorincludenot
only state-spacpruningstratgyiesbut heuristicsfor solving
piecavise MDPs for time, locationandapplications.Once
theresultingMDP hasbeensolved optimally on a tractable
decisionspacewe seekto comparethe efficiengy of heuris-
tic algorithmsthatcanbe scaledup to largersearchspaces.
Anotherlong term goal is to assesshe appropriatenesef
qualitatve informationwithin thedevelopedframework. Fi-
nally, the overall goal of this projectis to develop system
prototypesandperformusercenteredield trials.
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